Skip to main content

Part of the book series: What Radiology Residents Need to Know ((WRRNK))

  • 1346 Accesses

Abstract

This chapter introduces the classification of fractures and fracture healing and then describes the spectrum of imaging appearances of fractures of the cervical, thoracic, and lumbar spine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Eisenberg RL, Johnson NM. Comprehensive radiographic pathology. 7th ed. St. Louis: Elsevier; 2020.

    Google Scholar 

  2. Swischuk LE, Jadhav SP. Emergency musculoskeletal imaging in children. New York: Springer; 2014.

    Book  Google Scholar 

  3. Cheng X, Su Y, Huang M. Bone tumor imaging: case studies in hip and knee. Singapore: Springer; 2020.

    Book  Google Scholar 

  4. Eisenberg RL. Clinical imaging: an atlas of clinical diagnosis. 5th ed. Philadelphia: Wolters Kluwer/Lippincott Williams & Wilkins; 2010.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronald L. Eisenberg .

Electronic Supplementary Material

Fig. e1.1a

Value of MRI to detect an occult fracture. Radiograph of the left hip shows no evidence of a suspected acute fracture of the femoral neck. (Courtesy of JS Wu, MD, Boston) (JPG 1533 kb)

Fig. e1.1b

Value of MRI to detect an occult fracture. MR image clearly demonstrates high-intensity edema (white arrows) on both sides of a low-intensity fracture line (black arrow). (Courtesy of JS Wu, MD, Boston) (JPG 664 kb)

Fig. e1.2

Structure of a long bone. (Blausen.com Staff. Medical gallery of Blausen Medical’s 2014. Wiki J Med. 2014;1(2). https://doi.org/10.15347/wjm/2014.010. ISSN 2002-4436) (JPG 483 kb)

Fig. e1.3

Insufficiency fractures (arrows) involving the sacrum. This elderly woman had demineralized bones but no history of trauma. (Case courtesy of Dr. Chris O’Donnell, Radiopaedia.org, rID: 28137) (JPG 361 kb)

Fig. e1.4

Pathological fracture. A transverse fracture crosses the large benign tumor (arrows) of the distal femur [1] (JPG 528 kb)

Fig. e1.5

Chronic/old fracture (anterior-inferior iliac spine). The adjacent margins of the avulsed fragment and parent bone (arrow) both have sharp and opaque cortical margins. (Courtesy of JS Wu, MD, Boston) (JPG 564 kb)

Fig. e1.6.

Nonunion. Sclerosis about the margins of fractures of the distal tibia and fibula (arrows), with occlusion of the medullary canal by sclerotic bones. (James Heilman, MD/Wikimedia) (JPG 248 kb)

Fig. e1.7a

Nonunion. Persistent visualization of a distal radius fracture (arrows) with sclerotic margins separated by fibrous tissue and cartilage (arrows and arrowhead) (JPG 339 kb)

Fig. e1.7b

Nonunion. Persistent visualization of a distal radius fracture (arrows) with sclerotic margins separated by fibrous tissue and cartilage (arrows and arrowhead) (JPG 325 kb)

Fig. e1.8

Stress fracture. Faint sclerosis along the medial aspect of the femoral neck (arrow) (JPG 362 kb)

Fig. e1.9

Stress fracture. The proximal femoral diaphysis (arrow) is an atypical location. In this case it represents a characteristic complication of bisphosphonate treatment (JPG 168 kb)

Fig. e1.10a

Bilateral stress fractures in an athlete involved in jumping activities (JPG 278 kb)

Fig. e1.10b

Bilateral stress fractures in an athlete involved in jumping activities (JPG 284 kb)

Fig. e1.11a

Stress fracture. Sagittal T1-weighted image demonstrates a hypointense line (arrow) perpendicular to the major trabeculae of the distal tibia (JPG 242 kb)

Fig. e1.11b

Stress fracture. Sagittal T2-weighted image demonstrates the fracture line (white arrow) with surrounding edema. There is periosteal and soft-tissue edema as well. Note the subperiosteal edema at the posterior cortex of the tibia (arrowhead) [4] (JPG 223 kb)

Fig. e1.12a

Normal vertebral lines. Lateral radiograph. (Mikael Häggström, MD/Wikimedia) (JPG 1014 kb)

Fig. e1.12b

Normal vertebral lines. CT. (Mikael Häggström, MD/Wikimedia) (JPG 819 kb)

Fig. e1.13a

Jefferson fracture. Lateral displacement of the lateral masses of C1 with respect to C2, indicating disruption of the bony rim of C1. (Case courtesy of Dr Andrew Dixon, Radiopaedia.org, rID: 9601) (JPG 223 kb)

Fig. e1.13b

Jefferson fracture. Axial CT image shows distracted fractures of the anterior arch of C1 on the left (white arrow) and the posterior arch on the right (black arrow). (Case courtesy of Dr Andrew Dixon, Radiopaedia.org, rID: 9601) (JPG 277 kb)

Fig. e1.14

Odontoid fracture (type 2). Sagittal CT image shows the fracture with anterior displacement of the odontoid (arrow). (James Heilman, MD/Wikimedia) (JPG 367 kb)

Fig. e1.15a

Odontoid fracture (type 3). Coronal (arrows). Multiple transverse process fractures also are present. (Case courtesy of Dr. Alexandra Stanislavsky, Radiopaedia.org, rID: 12233) (JPG 209 kb)

Fig. e1.15b

Odontoid fracture (type 3). Sagittal CT images demonstrate a fracture extending into the body of C2 (arrows). Multiple transverse process fractures also are present. (Case courtesy of Dr. Alexandra Stanislavsky, Radiopaedia.org, rID: 12233) (JPG 196 kb)

Fig. e1.16

Flexion teardrop fracture. Sagittal CT image demonstrates a fracture of the anterior-inferior portion of the C4 vertebral body with mild focal kyphosis. (Case courtesy of Dr. Andrew Dixon, Radiopaedia.org, rID: 32497) (JPG 406 kb)

Fig. e1.17

Extension teardrop fracture of C3 (arrow). Sagittal T2-weighted MR image demonstrates the fracture at the anterior-inferior end plate of C3 (arrow) and prevertebral soft-tissue edema (arrowhead) (JPG 297 kb)

Fig. e1.18

Burst fracture. Coronal CT image demonstrates widening of the interpedicular distance at L3 (white arrow) compared to L2 (black arrow) (JPG 138 kb)

Fig. e1.19a

Chance fracture. Sagittal STIR sequence demonstrates a hyperintense horizontal fracture line through the vertebral body (arrow) (JPG 459 kb)

Fig. e1.19b

Chance fracture. On the T1-weighted sequence, the fracture line is hypointense (arrow) (JPG 276 kb)

Fig. e1.20a

Chance fracture. Frontal view shows the characteristic empty appearance of the involved vertebral body due to fractures of the posterior elements. Note the fractures of the left pedicle (black arrow) and transverse process (white arrows) [4] (JPG 507 kb)

Fig. e1.20b

Chance fracture. CT scan in another patient shows a fracture of the lumbar vertebral body (black arrows) associated with a lamina fracture at the same level (white arrow) [4] (JPG 407 kb)

Fig. e1.21

Coccyx fracture (arrow) (JPG 346 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Eisenberg, R.L. (2022). Trauma: Introduction and Spine. In: What Radiology Residents Need to Know: Musculoskeletal Radiology. What Radiology Residents Need to Know. Springer, Cham. https://doi.org/10.1007/978-3-030-72382-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-72382-8_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-72381-1

  • Online ISBN: 978-3-030-72382-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics