Skip to main content

Climate Action: The Feasibility of Climate Intervention on a Global Scale

  • Chapter
  • First Online:
Climate Geoengineering: Science, Law and Governance

Abstract

Today’s CO2 emissions are 60% greater than those in 1992 when Rio Earth Summit participants first agreed to act to prevent climate change. The failure to curb emissions is not due to a dearth of technical know-how; the climate intervention toolbox is full of strategies from mitigation to geoengineering and adaptation. Rather, it is due to a lack of political will exacerbated by gaps in our understanding of the complexity that reigns over the earth’s climate system. As we creep ever closer to crossing planetary thresholds and tipping points, time is running out to take the requisite actions to avoid global crises. Future efforts to slow, stabilize or reverse climate change must involve deployment of all possible interventions. The technical and political feasibility of climate action at a global scale rests on deep knowledge of how the climate system can be adjusted by these interdependent tools. Geoengineering entails two broad classes of endeavors with entirely different aims: carbon dioxide removal from the atmosphere and albedo modification to reduce the amount of sunlight hitting the earth’s surface. Many geoengineering options are the ultimate exercise of the engineering mentality deployed at massive scales in both time and space to buy time, despite the many actions that could be employed to actually solve the climate problem. This chapter explains and analyzes from a science and engineering perspective the multitude of available climate tools and considers potential challenges, uncertainties, and unexpected consequences of engineering climate adjustments at a global scale.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Waldman S. Atmospheric CO2 sets record high. ClimateWire (05.03.18); https://www.eenews.net/climatewire/2018/05/03/stories/1060080715

  2. 2.

    Fountain H., Patel J.K., Popovich N. 2017 Was One of the Hottest Years on Record. New York Times; https://www.nytimes.com/interactive/2018/01/18/climate/hottest-year-2017.html

  3. 3.

    NOAA: 2017 was 3rd warmest year on record for the globe; http://www.noaa.gov/news/noaa-2017-was-3rd-warmest-year-on-record-for-globe

  4. 4.

    Watts J. Arctic warming: scientists alarmed by ‘crazy’ temperatures. The Guardian (02.27.18). https://www.theguardian.com/environment/2018/feb/27/arctic-warming-scientists-alarmed-by-crazy-temperature-rises

  5. 5.

    NASA Global Climate Change; Arctic Sea Ice Minimum. https://climate.nasa.gov/vital-signs/arctic-sea-ice/

  6. 6.

    National Snow & Ice Data Center. Arctic Sea Ice news & Analysis; Monthly Archives: September 2017. http://nsidc.org/arcticseaicenews/2017/09/

  7. 7.

    Harvey C. Keeping the Arctic icy might hinge on half a degree. ClimateWire (04.03.18). https://www.eenews.net/climatewire/2018/04/03/stories/1060077985

  8. 8.

    National Snow & Ice Data Center. Arctic Sea Ice news & Analysis; Arctic winter warms up to a low summer ice season. http://nsidc.org/arcticseaicenews/2018/05/arctic-winter-warms-up-to-a-low-summer-ice-season/

  9. 9.

    Hobson M.K. Sea ice hits 2nd-lowest level in 39 years. ClimateWire (03.26.18). https://www.eenews.net/climatewire/2018/03/26/stories/1060077383

  10. 10.

    Wadhams P. The Global Impacts of Rapidly Disappearing Arctic Sea Ice. Yale Environment 360 (09.26.16). https://e360.yale.edu/features/as_arctic_ocean_ice_disappears_global_climate_impacts_intensify_wadhams

  11. 11.

    Waldman S. Climate change is transforming, rerouting Arctic rivers. ClimateWire (04.19.17). https://www.eenews.net/climatewire/2017/04/19/stories/1060053256

  12. 12.

    Shugar D.H. et al. (2017) River piracy and drainage basin reorganization led by climate-driven glacier retreat. Nature Geoscience, 10:370–375. https://www.nature.com/articles/ngeo2932

  13. 13.

    Struzik E. How Warming Is Profoundly Changing a Great Northern Wilderness. Yale Environment 360 (04.25.17). https://e360.yale.edu/features/how-warming-is-profoundly-changing-a-great-northern-wilderness

  14. 14.

    U.S.E.P.A. Greenhouse Gas Emissions. Understanding Global Warming Potentials. https://www.epa.gov/ghgemissions/understanding-global-warming-potentials

  15. 15.

    Wadhams P. Yale Environment 360. https://e360.yale.edu/features/as_arctic_ocean_ice_disappears_global_climate_impacts_intensify_wadhams

  16. 16.

    Hobson M.K. Sea ice hits 2nd-lowest level in 39 years. ClimateWire (03.26.18). https://www.eenews.net/climatewire/2018/03/26/stories/1060077383

  17. 17.

    Watts J. The Guardian (02.27.18). https://www.theguardian.com/environment/2018/feb/27/arctic-warming-scientists-alarmed-by-crazy-temperature-rises

  18. 18.

    Ecochard K. What’s causing the poles to warm faster than the rest of the Earth? NASA. https://www.nasa.gov/topics/earth/features/warmingpoles.html

  19. 19.

    National Snow & Ice Data Center. Quick Facts on Ice Sheets. https://nsidc.org/cryosphere/quickfacts/icesheets.html

  20. 20.

    Gornitz V. Sea Level Rise, After the Ice Melted and Today. NASA, Goddard Institute for Space Studies. https://www.giss.nasa.gov/research/briefs/gornitz_09/

  21. 21.

    Graeter K.A. et al. (2018) Ice Core Records of West Greenland Melt and Climate Forcing. Geophysical Research Letters, 45:7:3164–3172. https://doi.org/10.1002/2017GL076641

  22. 22.

    Guckenheimer J. & Ottino J.M. Foundations for Complex Systems Research in the Physical Sciences and Engineering. NSF Workshop Report, September 2008. http://mixing.chem-biol-eng.northwestern.edu/docs/nsf_complex_systems_FINAL.pdf

  23. 23.

    Harvey C. Waters on track to rise for centuries, even if emissions stop. ClimateWire (02.21.18). https://www.eenews.net/climatewire/2018/02/21/stories/1060074341

  24. 24.

    Mengel M. et al. (2018). Committed sea-level rise under the Paris Agreement and the legacy of delayed mitigation action. Nature Communications, 9:601. https://www.nature.com/articles/s41467-018-02985-8

  25. 25.

    The IMBIE team (2018). Mass balance of the Antarctic Ice Sheet from 1992 to 2017. Nature, 558:219–222. https://www.nature.com/articles/s41586-018-0179-y

  26. 26.

    Harvey C. Ice is melting 3 times as fast as it did 25 years ago. ClimateWire (06.14.18). https://www.eenews.net/climatewire/2018/06/14/stories/1060084477

  27. 27.

    Goodell J. The Water Will Come (Little, Brown & Co. 2017 NY, NY) p. 149 & 234.

  28. 28.

    Carbon Dioxide Information Analysis Center. Global Fossil-Fuel CO2 Emissions. http://cdiac.ess-dive.lbl.gov/trends/emis/tre_glob_2014.html

  29. 29.

    International Energy Agency. Global Energy & CO2 Status Report 2017 (OECD/IEA, March, 2018). https://www.iea.org/publications/freepublications/publication/GECO2017.pdf

  30. 30.

    Welch C. Carbon Emissions had Leveled Off. Now They’re Rising Again. National Geographic (11.13.17). https://news.nationalgeographic.com/2017/11/climate-change-carbon-emissions-rising-environment/

  31. 31.

    McDonough W., Braungart M. Cradle to Cradle. (Farrar, Straus & Giroux, NY, NY, 2002)

  32. 32.

    Scheer R. & Moss D. After 40 Years, Has Recycling Lived Up to Its Billing? EarthTalk, Scientific American. https://www.scientificamerican.com/article/has-recycling-lived-up-to-its-promises/

  33. 33.

    Anastas P.T. & Zimmerman J.B. (2003). Design through the Twelve Principles of Green Engineering. Environmental Science & Technology, 37:5:94A-101A.

  34. 34.

    http://science.sciencemag.org/content/355/6331/1269.full

  35. 35.

    Global Energy Statistical Yearbook 2018. Energy intensity – slowdown in energy intensity improvement in 2017. https://yearbook.enerdata.net/total-energy/world-energy-intensity-gdp-data.html

  36. 36.

    Griffin R. The U.S. is Losing Ground in the Race for Energy Efficiency. Bloomberg (06.26.18). https://www.bloomberg.com/news/articles/2018-06-26/the-u-s-is-losing-ground-in-the-race-for-energy-efficiency

  37. 37.

    McCamy L. On August 1, we’ll have consumed more resources than the Earth can regenerate n a year – here’s how you can reduce your ecological footprint. Business Insider (07.31.18). https://www.businessinsider.com/earth-overshoot-day-is-august-1-2018-7 Rockström J. et al. (2017). A roadmap for rapid decarbonization. Science, 355:6331:1269–1271.

  38. 38.

    U.S. Energy Information Administration. Today in Energy. EIA projects 28% increase in world energy use by 2040. (09.14.17). https://www.eia.gov/todayinenergy/detail.php?id=32912

  39. 39.

    U.S. Energy Information Administration. International Energy Outlook 2017. Executive Summary. https://www.eia.gov/outlooks/ieo/exec_summ.php

  40. 40.

    Holmes à Court S. Could Petra Nova, The Leading CCS Power Station, Provide A Model for Australia. Clean Technica (06.12.17). https://cleantechnica.com/2017/06/12/petra-nova-leading-ccs-power-station-provide-model-australia/

  41. 41.

    Ibid.

  42. 42.

    Global CCS Institute. Projects Database. Boundary Dam Carbon Capture and Storage. https://www.globalccsinstitute.com/projects/boundary-dam-carbon-capture-and-storage-project

  43. 43.

    U.S. EIA. Today in Energy (10.31.17). https://www.eia.gov/todayinenergy/detail.php?id=33552

  44. 44.

    Daniels S. FutureGen ‘clean-coal’ plant is dead. Crain’s Chicago Business (02.03.15). http://www.chicagobusiness.com/article/20150203/NEWS11/150209921/futuregen-clean-coal-plant-in-illinois-is-killed-by-obama-administration

  45. 45.

    Socolow R.H. & Pacala S.W. (2006) A Plan to Keep Carbon in Check. Scientific American, 305:968–972.

  46. 46.

    Harvey C. Forests had a really bad year. ClimateWire (06.28.18). https://www.eenews.net/climatewire/2018/06/28/stories/1060087181

  47. 47.

    Deep Decarbonization Pathways Project, http://deepdecarbonization.org

  48. 48.

    Deep Decarbonization Pathways Project (2015). Pathways to deep decarbonization 2015 report – executive summary, SDSN – IDDRI. http://deepdecarbonization.org/wp-content/uploads/2015/12/DDPP_EXESUM-1.pdf

  49. 49.

    Davis S. et al. (2018). Net-zero emissions energy systems. Science, 360:6396; DOI: https://doi.org/10.1126/science.aas9793

    http://science.sciencemag.org/content/360/6396/eaas9793.full

  50. 50.

    Harvey C. Cement’s CO2 is everywhere. Will it sink climate goals? ClimateWire (07.09.18). https://www.eenews.net/climatewire/stories/1060088153

  51. 51.

    Xi F. et al. (2016). Substantial global carbon uptake by cement carbonation. Nature Geoscience, 9:880–883 https://www.nature.com/articles/ngeo2840

  52. 52.

    Sachs J. et al. (2014) Pathways to deep decarbonization, 2014 report, Deep Decarbonization Pathways Project, SDSN – IDDRI. http://deepdecarbonization.org/wp-content/uploads/2015/06/DDPP_Digit.pdf

  53. 53.

    Rockström J. et al. (2017). Science, 355:6331:1269–1271. http://science.sciencemag.org/content/355/6331/1269.full

  54. 54.

    Irfan U. World must pull CO2 from the sky to meet Paris goals. ClimateWire (03.24.17). https://www.eenews.net/climatewire/stories/1060052028/

  55. 55.

    Smith P. et al. (2016). Biophysical and economic limits to negative CO2 emissions. Nature Climate Change, 6:42–50. https://www.nature.com/articles/nclimate2870

  56. 56.

    Sachs J. et al. (2014). DDPP 2014 report. http://deepdecarbonization.org/wp-content/uploads/2015/06/DDPP_Digit.pdf

  57. 57.

    Hood M. 1.5 C climate goal ‘very unlikely’ but doable: draft UN report. Phys.org. (https://phys.org/news/2018-01-climate-goal-doable.html

  58. 58.

    IPCC Special Report (2018). Global Warming of 1.5 °C. (https://www.ipcc.ch/sr15/)

  59. 59.

    Kelemen P.B. Lamont-Doherty Earth Observatory. Carbon Sequestration. Mineral carbonation in peridotite for CO2 capture and storage (CCS). Earth Institute, Columbia University. https://www.ldeo.columbia.edu/gpg/projects/carbon-sequestration

  60. 60.

    Rockström J. et al. (2017). Science, 355:6331:1269–1271. http://science.sciencemag.org/content/355/6331/1269.full

  61. 61.

    Carrington D. CO2 turned into stone in Iceland in climate change breakthrough. The Guardian (06.09.16). https://www.theguardian.com/environment/2016/jun/09/co2-turned-into-stone-in-iceland-in-climate-change-breakthrough

  62. 62.

    Kelemen P.B. & Matter J. (2008). In situ carbonation of peridotite for CO2 storage. Science, 105:45:17295–17300. http://www.pnas.org/content/105/45/17295

  63. 63.

    Bullis K. Carbon-Capturing Rock. Geologists discover that certain rock formations could sequester large amounts of carbon dioxide. MIT Technology Review (11.04.2008) https://www.technologyreview.com/s/411129/carbon-capturing-rock/

  64. 64.

    Strefler J. et al. (2018). Potential and costs of carbon dioxide removal by enhanced weathering of rocks. Environmental Research Letters, 13:034010 http://iopscience.iop.org/article/10.1088/1748-9326/aaa9c4/meta

  65. 65.

    Ibid.

  66. 66.

    Velasquez-Manoff M. Can Dirt Save the Earth. The New York Times Magazine (04.18.18). https://www.nytimes.com/2018/04/18/magazine/dirt-save-earth-carbon-farming-climate-change.html

  67. 67.

    Erickson B.E. (2016) Regenerating degraded dirt. Efforts to boost soil carbon aim to improve crop yields and combat climate change. Chemical & Engineering News, 94:10:40–44. https://cen.acs.org/articles/94/i10/Regenerating-degraded-dirt.html

  68. 68.

    DeLonge M.S. et al. (2013). A Lifecycle Model to Evaluate Carbon Sequestration Potential and Greenhouse Gas Dynamics of Managed Grasslands. Ecosystems, 16:6:962–979. https://link.springer.com/article/10.1007/s10021-013-9660-5

  69. 69.

    Erickson B.E. (2016). Interest in biochar surges. Chemical & Engineering News, 94:10:40–44. https://cen.acs.org/articles/94/i10/Interest-biochar-surges.html

  70. 70.

    Gaunt J.L. & J. Lehmann (2008). Energy Balance and Emissions Associated with Biochar Sequestration and pyrolysis Bioenergy Production. Environmental Science & Technology, 42:4152–4158. https://pubs.acs.org/doi/pdf/10.1021/es071361i

  71. 71.

    Lehmann J. (2007). Bio-energy in the black. Frontiers in Ecology and the Environmental, 5:7:381–387. https://esajournals.onlinelibrary.wiley.com/doi/full/10.1890/1540-9295%282007%295%5B381%3ABITB%5D2.0.CO%3B2

  72. 72.

    Smith P. (2016). Soil carbon sequestration and biochar as negative emission technologies. Global Change Biology, 22:1315–1324; doi: https://doi.org/10.1111/gcb.13178. https://onlinelibrary.wiley.com/doi/pdf/10.1111/gcb.13178

  73. 73.

    Smith P. et al. (2015). Nature Climate Change, 6:42–50. https://www.nature.com/articles/nclimate2870.pdf

  74. 74.

    Harvey C. Trees are losing their ability to soak up CO2. ClimateWire (07.13.18). https://www.eenews.net/climatewire/2018/07/13/stories/1060088955

  75. 75.

    Zhu K. et al. (2018). Limits to growth of forest biomass carbon sink under climate change. Nature Communications, 9:2709. https://www.nature.com/articles/s41467-018-05132-5

  76. 76.

    Wolosin M. & Harris N. (2018) Tropical Forests and Climate Change: The Latest Science. Working Paper June 2018. World Resources Institute. https://wriorg.s3.amazonaws.com/s3fs-public/ending-tropical-deforestation-tropical-forests-climate-change.pdf

  77. 77.

    Ibid.

  78. 78.

    Pearce F. Rivers in the Sky: How Deforestation Is Affecting Global Water Cycles. Yale Environment 360 (07.24.18). https://e360.yale.edu/features/how-deforestation-affecting-global-water-cycles-climate-change

  79. 79.

    Smith P. et al. (2015). Nature Climate Change, 6:42–50. https://www.nature.com/articles/nclimate2870.pdf

  80. 80.

    Williamson P. (2016) Emissions reduction: Scrutinize CO2 removal methods. Nature, 530:153–155; doi:https://doi.org/10.1038/530153a. https://www.nature.com/news/emissions-reduction-scrutinize-co2-removal-methods-1.19318

  81. 81.

    Smith P. et al. (2015). Nature Climate Change, 6:42–50. https://www.nature.com/articles/nclimate2870.pdf

  82. 82.

    Williamson P. (2016) Nature, 530:153–155. https://www.nature.com/news/emissions-reduction-scrutinize-co2-removal-methods-1.19318

  83. 83.

    Boston Treepods 2011. Shift Boston. http://www.shiftboston.org/competitions/2011_treepods.php

  84. 84.

    Biello D. How Far Can Technology Go to Stave Off Climate Change? Yale Environment 360 (01.18.17). https://e360.yale.edu/features/how_far_can_technology_go_to_stave_off_climate_change

  85. 85.

    Kumar A. et al. (2015). Direct Air Capture of CO2 by Physisorbent Materials. Angewandte Chemie, 54:14372–14,377. https://onlinelibrary.wiley.com/doi/full/10.1002/anie.201506952

  86. 86.

    Socolow R. et al. (2011) Direct Air Capture of CO2 with Chemicals. A Technology Assessment for the APS Panel on Public Affairs. American Physical Society (06.01.2011). https://infoscience.epfl.ch/record/200555/files/dac2011.pdf

  87. 87.

    Ibid.

  88. 88.

    Sanz-Perez E. et al. (2016). Direct Capture of CO2 from Ambient Air. Chemical Reviews, 116:19:11840–11,876; DOI: https://doi.org/10.1021/acs.chemrev. https://pubs.acs.org/doi/full/10.1021/acs.chemrev.6b00173

  89. 89.

    Climeworks. Capturing CO2 from air. http://www.climeworks.com

  90. 90.

    Carbon Engineering. Direct Air Capture. http://carbonengineering.com/about-dac/

  91. 91.

    Keith D.W. et al. (2018) Process for Capturing CO2 from the Atmosphere. Joule, 2:8:1573–1594. https://www.cell.com/joule/fulltext/S2542-4351(18)30225-3

  92. 92.

    Tollefson J. (2018). Sucking carbon dioxide from air is cheaper than scientists thought. Nature, 558:173; doi: https://doi.org/10.1038/d41586-018-05357-w. https://www.nature.com/articles/d41586-018-05357-w

  93. 93.

    Smith P. et al. (2015). Nature Climate Change, 6:42–50. https://www.nature.com/articles/nclimate2870.pdf

  94. 94.

    Morton O. (2007). Is This What It Takes To Save The World? Nature, 447:132–136. https://www.nature.com/articles/447132a.pdf

  95. 95.

    U.S. Geological Survey. The Cataclysmic 1991 Eruption of Mount Pinatubo, Philippines. Fact Sheet 113–97. https://pubs.usgs.gov/fs/1997/fs113-97/

  96. 96.

    Kilmont Z. et al. (2013). The last decade of global anthropogenic sulfur dioxide: 2000–2011 emissions. Environmental Research Letters, 8:014003. http://iopscience.iop.org/article/10.1088/1748-9326/8/1/014003

  97. 97.

    Crutzen P.J. (2006). Albedo Enhancement by Stratospheric Sulfur Injections: A Contribution to Resolve a Policy Dilemma. Climate Change, 77:211–219; DOI: https://doi.org/10.1007/s10584-006-9101-y. https://link.springer.com/content/pdf/10.1007/s10584-006-9101-y.pdf

  98. 98.

    Kilmont Z. et al. (2013). Environmental Research Letters, 8:014003. http://iopscience.iop.org/article/10.1088/1748-9326/8/1/014003

  99. 99.

    Global Historical GHG Emissions. Climate Watch. https://www.climatewatchdata.org/ghg-emissions?source=31&version=1

  100. 100.

    Crutzen P.J. (2006). Climate Change, 77:211–219. https://link.springer.com/content/pdf/10.1007/s10584-006-9101-y.pdf

  101. 101.

    Keith D. A Case for Climate Engineering (MIT Press, Boston, MA, 2013) 224 pp.

  102. 102.

    Ibid.

  103. 103.

    Morton O. (2007). Nature, 447:132–136. https://www.nature.com/articles/447132a.pdf

  104. 104.

    Keith D. A Case for Climate Engineering (MIT Press, Boston, MA, 2013).

  105. 105.

    Temple J. Harvard Scientists Moving Ahead on Plans for Atmospheric Geoengineering Experiments. MIT Technology Review (03.24.17). https://www.technologyreview.com/s/603974/harvard-scientists-moving-ahead-on-plans-for-atmospheric-geoengineering-experiments/

  106. 106.

    Morton O. (2007). Nature, 447:132–136. https://www.nature.com/articles/447132a.pdf

  107. 107.

    Keith D. A Case for Climate Engineering (MIT Press, Boston, MA, 2013).

  108. 108.

    Percentage of total population living in coastal areas. http://www.un.org/esa/sustdev/natlinfo/indicators/methodology_sheets/oceans_seas_coasts/pop_coastal_areas.pdf

  109. 109.

    Usery E.L. et al. (2010) Modeling Sea-level Rise and Surge in Low-lying Urban Areas using Spatial Data, Geographic Information Systems, and Animation Methods, in Geospatial Techniques in Urban Hazard and Disaster Analysis, P. Showalter & Y. Lu, eds. (Springer Netherlands 2019) Chapter 2, p. 11–30; DOI: https://doi.org/10.1007/978-90-481-2238-7_2. https://cegis.usgs.gov/pdf/sea_level_rise_text.pdf

  110. 110.

    Parker L. Sea Level Rise Will Flood Hundreds of Cities in the Near Future. National Geographic (07.12.17). https://news.nationalgeographic.com/2017/07/sea-level-rise-flood-global-warming-science/

  111. 111.

    Mulkern A. Rising Sea Levels Will Hit California Harder Than Other Places. Scientific American (04.27.17). https://www.scientificamerican.com/article/rising-sea-levels-will-hit-california-harder-than-other-places/

  112. 112.

    Vitousek S. et al. (2017). Doubling of coastal flooding frequency within decades due to sea-level rise. Scientific Reports, 7:1399. https://www.nature.com/articles/s41598-017-01362-7#citeas

  113. 113.

    Lindsay R. Climate Change: Global Sea Level. Climate.gov, NOAA (08.01.18) https://www.climate.gov/news-features/understanding-climate/climate-change-global-sea-level

  114. 114.

    McLeman R. Migration and displacement risks due to mean sea-level rise. Bulletin of the Atomic Scientists (05.04.18). https://thebulletin.org/2018/05/migration-and-displacement-risks-due-to-mean-sea-level-rise/

  115. 115.

    van Heerden I.L. (2018). Setting the Stage for the Katrina Catastrophe: Environmental Degradation, Engineering Miscalculation, Ignoring Science and Human Mismanagement, in Creating Katrina, Rebuilding Resilience, Lessons from New Orleans on Vulnerability and Resiliency, M.J. Zakour, N.B. Mock, P. Kadetz, eds. (Butterworth-Heinemann, 2018) Chapter 6, p133–158. https://www.sciencedirect.com/science/article/pii/B9780128095577000065

  116. 116.

    Westerink J. et al. (2006). Note on the Influence of the Mississippi River Gulf Outlet on Hurricane Induced Storm Surge in New Orleans and Vicinity. http://www.columbia.edu/itc/journalism/cases/katrina/Army/Army%20Corps%20of%20Engineers/Influence%20of%20the%20MRGO%20on%20Storm%20Surge.pdf

  117. 117.

    Gilroy W.G. Changes proposed to New Orleans area levee systems. Science Daily (07.24.13). https://www.sciencedaily.com/releases/2013/07/130724200557.htm

  118. 118.

    Goodell J. Rising Waters: Can a Massive Barrier Save Venice from Drowning. Yale Environment 360 (12.05.17). https://e360.yale.edu/features/rising-waters-can-a-massive-sea-barrier-save-venice-from-drowning

  119. 119.

    Rossi M. Will a Huge New Flood Barrier Save Venice? CityLab (04.03.18) https://www.citylab.com/environment/2018/04/will-a-huge-new-flood-barrier-save-venice/556226/

  120. 120.

    Goodell J. Yale Environment 360 (12.05.17). https://e360.yale.edu/features/rising-waters-can-a-massive-sea-barrier-save-venice-from-drowning

  121. 121.

    Goodell J. The Water Will Come (Little, Brown & Co. 2017 NY, NY) Chapter 11, p238.

  122. 122.

    van Heerden I.L. (2018). in Creating Katrina, Rebuilding Resilience, Lessons from New Orleans on Vulnerability and Resiliency, M.J. Zakour, N.B. Mock, P. Kadetz, eds. (Butterworth-Heinemann, 2018) Chapter 6, p133–158. https://www.sciencedirect.com/science/article/pii/B9780128095577000065

  123. 123.

    Robichaux E. Coast 2050’s Lasting Impacts on Coastal Restoration. Delta Dispatches. Restore the Mississippi River Delta (11.05.15). http://mississippiriverdelta.org/coast-2050s-lasting-impacts-on-coastal-restoration/

  124. 124.

    Narayan S. et al. (2017). The Value of Coastal Wetlands for Flood Damage Reduction in the Northeastern USA. Scientific Reports, 7:9463. https://www.nature.com/articles/s41598-017-09269-z

  125. 125.

    Kimmelman M. & Haner J. The Dutch Have Solutions to Rising Seas. The World Is Watching, in Changing Climate, Changing Cities, The New York Times (06.15.17). https://www.nytimes.com/interactive/2017/06/15/world/europe/climate-change-rotterdam.html

  126. 126.

    Katz C. To Control Floods, The Dutch Turn to Nature for Inspiration. Yale Environmental 360 (02.21.13). https://e360.yale.edu/features/to_control_floods_the_dutch_turn_to_nature_for_inspiration

  127. 127.

    ClimateWire. How the Dutch Make “Room for the River” by Redesigning Cities. Scientific American (01.20.12). https://www.scientificamerican.com/article/how-the-dutch-make-room-for-the-river/

  128. 128.

    Bentley C. Holland is relocating homes to make more room for high water. Public Radio International (PRI) (06.22.16). https://www.pri.org/stories/2016-06-22/holland-relocating-homes-make-more-room-high-water

  129. 129.

    Schwartz J. Surrendering to Rising Seas. Scientific American (08.01.18). https://www.scientificamerican.com/article/surrendering-to-rising-seas/

  130. 130.

    Jevrejeva A. et al. (2018). Flood damage costs under the sea level rise with warming of 1.5 °C and 2 °C. Environmental Research Letters, 13:074014. http://iopscience.iop.org/article/10.1088/1748-9326/aacc76/pdf

  131. 131.

    van Heerden I.L. (2018). in Creating Katrina, Rebuilding Resilience, Lessons from New Orleans on Vulnerability and Resiliency, M.J. Zakour, N.B. Mock, P. Kadetz, eds. (Butterworth-Heinemann, 2018) Chapter 6, p133158. https://www.sciencedirect.com/science/article/pii/B9780128095577000065

  132. 132.

    Garfield L. Manhattan plans to build a massive $1 billion wall and park to guard against the next inevitable superstorm. Business Insider (04.27.18). https://www.businessinsider.com/new-york-city-flooding-manhattan-coastal-barriers-2018-4

  133. 133.

    McGeehan P. & Hu W. Five Years After Sandy, Are We Better Prepared? The New York Times (10.29.17). https://www.nytimes.com/2017/10/29/nyregion/five-years-after-sandy-are-we-better-prepared.html

  134. 134.

    Harris J. (2016) Poyang Lake, Yangtze River Basin, China, in The Wetland Book, C.M. Finlayson, G.R. Milton, R.C. Prentice, N.C. Davidson, eds. (Springer Nature Switzerland 2018) https://link.springer.com/referenceworkentry/10.1007%2F978-94-007-6173-5_34-2

  135. 135.

    Ives M. As China’s Largest Freshwater Lake Shrinks, Solution Faces Criticism. New York Times (12.28.16) https://www.nytimes.com/2016/12/28/world/asia/china-lake-poyang-finless-porpoise.html

  136. 136.

    Zhang Z. et al. (2016). Analysis of Poyang Lake water balance and its indication of river-lake interaction. SpringerPlus, 5:1:1555: doi: https://doi.org/10.1186/s40064-016-3239-5. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5021641/

  137. 137.

    Ives M. The New York Times (12.28.16) https://www.nytimes.com/2016/12/28/world/asia/china-lake-poyang-finless-porpoise.html

  138. 138.

    Hersher R. Levees make Mississippi River Floods Worse, But We Keep Building Them. Environment & Energy Collaborative, National Public Radio (NPR), (05.21.18). https://www.npr.org/2018/05/21/610945127/levees-make-mississippi-river-floods-worse-but-we-keep-building-them

  139. 139.

    Ibid.

  140. 140.

    Total fire ban enforced in several counties across Sweden. The Local (07.24.18). https://www.thelocal.se/20180724/sweden-wildfires-25000-hectares-of-forest-still-burning

  141. 141.

    Top 20 Most Destructive California Wildfires. http://www.fire.ca.gov/communications/downloads/fact_sheets/Top20_Destruction.pdf

  142. 142.

    Arango T. & Medina J. California Fire Now the Largest in State History: ‘People are on Edge.’ The New York Times (08.07.18) https://www.nytimes.com/2018/08/07/us/california-fires-mendocino.html

  143. 143.

    Extreme Heat. https://www.ready.gov/heat

  144. 144.

    For Cities, The Heat Is On. The Future We Don’t Want. Heat Extremes. C40 Citieshttps://www.c40.org/other/the-future-we-don-t-want-for-cities-the-heat-is-on

  145. 145.

    Chandler D.L. Deadly heat waves could hit South Asia this century. Without action, climate change could devastate a region home to one-fifth of humanity study finds. MIT News (08.02.17). http://news.mit.edu/2017/deadly-heat-waves-could-hit-south-asia-century-0802

  146. 146.

    Climate change is making the Arab world more miserable. The Economist (05.31.18)https://www.economist.com/middle-east-and-africa/2018/05/31/climate-change-is-making-the-arab-world-more-miserable

  147. 147.

    Sengupta S. & Popovich N. Global Warming in South Asia: 800 Million at Risk. The New York Times (06.28.18). https://www.nytimes.com/interactive/2018/06/28/climate/india-pakistan-warming-hotspots.html?action=click&module=RelatedLinks&pgtype=Article

  148. 148.

    Mathiesen K. et al. Climate Home News (06.27.18). http://www.climatechangenews.com/2018/06/27/new-leaked-draft-of-un-1-5c-climate-report-in-full-and-annotated/

  149. 149.

    Harvey C. Even 2 °C of warming could turn Earth into ‘hothouse.’ ClimateWire (08.07.18). https://www.eenews.net/climatewire/2018/08/07/stories/1060092901

  150. 150.

    Sachs J. et al. DDPP 2014 report. http://deepdecarbonization.org/wp-content/uploads/2015/06/DDPP_Digit.pdf

  151. 151.

    2050 low-carbon economy. Climate Action. European Commission. https://ec.europa.eu/clima/policies/strategies/2050_en

  152. 152.

    Gray A. Countries are announcing plans to phase out petrol and diesel cars. Is yours on the list? World Economic Forum (09.26.18). https://www.weforum.org/agenda/2017/09/countries-are-announcing-plans-to-phase-out-petrol-and-diesel-cars-is-yours-on-the-list/

  153. 153.

    Renewable energy statistics. Eurostat (06.2018) http://ec.europa.eu/eurostat/statistics-explained/index.php/Renewable_energy_statistics

  154. 154.

    Dudley D. Renewable Energy Will Be Consistently Cheaper Than Fossil Fuels by 2020, Report Claims. Forbes (01.13.18). https://www.forbes.com/sites/dominicdudley/2018/01/13/renewable-energy-cost-effective-fossil-fuels-2020/#66c3f0e14ff2

  155. 155.

    Penn I. It’s the No. 1 Power Source, but Natural Gas Faces Headwinds. The New York Times (03.28.18). https://www.nytimes.com/2018/03/28/business/energy-environment/natural-gas-power.html

  156. 156.

    Smith P. et al. (2015). Nature Climate Change, 6:42–50. https://www.nature.com/articles/nclimate2870.pdf

  157. 157.

    Smith L. et al. (2018). Chaos and the Flow Capture Problem: Polluting is Easy, Cleaning is Hard. Physical Review Applied, in press

  158. 158.

    Smith P. et al. (2015). Nature Climate Change, 6:42–50. https://www.nature.com/articles/nclimate2870.pdf

  159. 159.

    Harvey C. ClimateWire (08.07.18). https://www.eenews.net/climatewire/2018/08/07/stories/1060092901

  160. 160.

    Steffen W. et al. (2018). Trajectories of the Earth System in the Anthropocene. PNAS, 115:33:8252–2859. http://www.pnas.org/content/115/33/8252

  161. 161.

    Harvey C. CO2 can sharpen extreme weather without higher temps. ClimateWire (06.21.18). https://www.eenews.net/climatewire/2018/06/21/stories/1060085723

  162. 162.

    Baker H.S. et al. (2018). Higher CO2 concentrations increase extreme event risk in a 1.5 °C world. Nature Climate Change, 8:604–608. https://www.nature.com/articles/s41558-018-0190-1

  163. 163.

    Pongratz J. et al. (2012). Crop yields in a geoengineered climate. Nature Climate Change, 2:101–105. https://www.nature.com/articles/nclimate1373

  164. 164.

    Xia L. et al. (2014). Solar radiation management impacts on agriculture in China: A case study in the Geoengineering Model Intercomparison Project (GeoMI). Journal of Geophysical Research: Atmospheres, 119:8695–8711; DOI: https://doi.org/10.1002/2013JD020630. https://agupubs.onlinelibrary.wiley.com/doi/epdf/10.1002/2013JD020630

  165. 165.

    Harvey C. Manipulating sun rays won’t help crops grown. ClimateWire (08.09.18). https://www.eenews.net/climatewire/2018/08/09/stories/1060093717

  166. 166.

    Proctor J. et al. (2018). Estimating global agricultural effects of geoengineering using volcanic eruptions. Nature, 560:480–483. https://www.nature.com/articles/s41586-018-0417-3

  167. 167.

    Trenberth K.E. & Dai A. (2007). Effects of Mount Pinatubo volcanic eruption on the hydrological cycle as an analog of geoengineering. Geophysical Research Letters, 34:L15702; doi:https://doi.org/10.1029/2007GL030524

    https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2007GL030524

  168. 168.

    Trenberth K.E. (2011). Changes in precipitation with climate change. Climate Research, 47:123–138; doi: https://doi.org/10.3354/cr00953. https://www.int-res.com/articles/cr_oa/c047p123.pdf

  169. 169.

    Ibid.

  170. 170.

    Richardson T.B. et al. (2016). Understanding the Rapid Precipitation Response to CO2 and Aerosol Forcing on a Regional Scale. Journal of Climate, 29:583–594; DOI: https://doi.org/10.1175/JCLI-D-15-0174.1. https://journals.ametsoc.org/doi/pdf/10.1175/JCLI-D-15-0174.1

  171. 171.

    Kolbert E. Can Carbon-Dioxide Removal Save the World? Annals of Science, The New Yorker (11.20.17). https://www.newyorker.com/magazine/2017/11/20/can-carbon-dioxide-removal-save-the-world

  172. 172.

    Lohmann U. & Gasparini B. (2017). A cirrus cloud climate dial? Cirrus cloud seeding may help to reduce climate warming, but large uncertainties remain. Science, 357:6348:248–249; DOI: https://doi.org/10.1126/science.aan3325. http://science.sciencemag.org/content/sci/357/6348/248.full.pdf

  173. 173.

    Georgescu M. et al. (2014). Urban Adaptation can roll back warming of emerging megapolitan regions. PNAS, 111:8:2909–2914; https://doi.org/10.1073/pnas.1322280111 . http://www.pnas.org/content/111/8/2909

  174. 174.

    Robock A. (2008). 20 reasons why geoengineering may be a bad idea. Bulletin of the Atomic Scientists, 64:2:14–18 (59); DOI: https://doi.org/10.2968/064002006. http://climate.envsci.rutgers.edu/pdf/20Reasons.pdf

  175. 175.

    Moore J.C. et al. (2018). Geoengineering polar glaciers to slow sea-level rise. Nature, 555:303–305. https://www.nature.com/magazine-assets/d41586-018-03036-4/d41586-018-03036-4.pdf

  176. 176.

    Onishi N. & Sengupta S. Dangerously Low on Water, Cape Town Now Faces ‘Day Zero.’ The New York Times (01.30.18). https://www.nytimes.com/2018/01/30/world/africa/cape-town-day-zero.html

  177. 177.

    Olivier D.W. Cape Town’s water crisis: driven by politics more than drought. The Conversation (12.12.17). https://theconversation.com/cape-towns-water-crisis-driven-by-politics-more-than-drought-88191

  178. 178.

    Ibid.

  179. 179.

    The 11 cities most likely to run out of drinking water- like Cape Town. BBC News (02.11.18). https://www.bbc.com/news/world-42982959

  180. 180.

    Welcome to the Antrhopocene. http://www.anthropocene.info

  181. 181.

    Banusiewicz J.D. Hagel to Address ‘Threat Multiplier’ of Climate Change. DoD News (10,13,14), Defense Media Activity. U.S. Department of Defense. https://dod.defense.gov/News/Article/Article/603440/

  182. 182.

    Rich N. Losing Earth: The Decade We Almost Stopped Climate Change. The New York Times (08.01.18). https://www.nytimes.com/interactive/2018/08/01/magazine/climate-change-losing-earth.html

  183. 183.

    Ibid.

  184. 184.

    Lazarus R. J. (2009). Super Wicked Problems and Climate Change: Restraining the Present to Liberate the Future. Cornell Law Review, 94:1153–1233. https://scholarship.law.georgetown.edu/cgi/viewcontent.cgi?referer=http://scholar.google.com/&httpsredir=1&article=1152&context=facpub

  185. 185.

    Sachs J. et al. (2014) DDPP 2014 report, p VII. http://deepdecarbonization.org/wp-content/uploads/2015/06/DDPP_Digit.pdf

  186. 186.

    Rockström J. et al. (2017). Science, 355:6331:1269–1271. http://science.sciencemag.org/content/355/6331/1269.full

  187. 187.

    Kolbert E. The New Yorker (11.20.17). https://www.newyorker.com/magazine/2017/11/20/can-carbon-dioxide-removal-save-the-world

References

  1. Anastas, P.T., Zimmerman, J.B.: Design through the twelve principles of green engineering. Environ. Sci. Technol. 37(5), 94A–101A (2003)

    Article  Google Scholar 

  2. Arango, T., Medina, J.: California fire now the largest in state history: ‘people are on edge.’ The New York Times (08.07.2018). https://www.nytimes.com/2018/08/07/us/california-fires-mendocino.html

  3. Baker, H.S., et al.: Higher CO2 concentrations increase extreme event risk in a 1.5 °C world. Nat. Clim. Change. 8, 604–608 (2018) https://www.nature.com/articles/s41558-018-0190-1

    Article  Google Scholar 

  4. Bentley, C.: Holland is relocating homes to make more room for high water. Public Radio International (PRI) (06.22.2016). https://www.pri.org/stories/2016-06-22/holland-relocating-homes-make-more-room-high-water

  5. Biello, D.: How far can technology go to stave off climate change? Yale Environment 360 (01.18.2017). https://e360.yale.edu/features/how_far_can_technology_go_to_stave_off_climate_change

  6. Bullis, K.: Carbon-Capturing Rock. Geologists discover that certain rock formations could sequester large amounts of carbon dioxide. MIT Technology Review (11.04.2008). https://www.technologyreview.com/s/411129/carbon-capturing-rock/

  7. Carrington, D.: CO2 turned into stone in Iceland in climate change breakthrough. The Guardian (06.09.2016). https://www.theguardian.com/environment/2016/jun/09/co2-turned-into-stone-in-iceland-in-climate-change-breakthrough

  8. Chandler, D.L.: Deadly heat waves could hit South Asia this century. Without action, climate change could devastate a region home to one-fifth of humanity study finds. MIT News (08.02.2017). http://news.mit.edu/2017/deadly-heat-waves-could-hit-south-asia-century-0802

  9. Climate change is making the Arab world more miserable. The Economist (05.31.2018).https://www.economist.com/middle-east-and-africa/2018/05/31/climate-change-is-making-the-arab-world-more-miserable

  10. ClimateWire.: How the Dutch Make “Room for the River” by Redesigning Cities. Scientific American (01.20.2012). https://www.scientificamerican.com/article/how-the-dutch-make-room-for-the-river/

  11. Crutzen, P.J.: Clim. Change. 77, 211–219 (2006) https://link.springer.com/content/pdf/10.1007/s10584-006-9101-y.pdf

    Article  Google Scholar 

  12. Daniels, S.: FutureGen ‘clean-coal’ plant is dead. Crain’s Chicago Business (02.03.2015). http://www.chicagobusiness.com/article/20150203/NEWS11/150209921/futuregen-clean-coal-plant-in-illinois-is-killed-by-obama-administration

  13. Davis, S., et al.: Net-zero emissions energy systems. Science. 360, 6396 (2018). https://doi.org/10.1126/science.aas9793. http://science.sciencemag.org/content/360/6396/eaas9793.full

    Article  Google Scholar 

  14. DeLonge, M.S., et al.: A lifecycle model to evaluate carbon sequestration potential and greenhouse gas dynamics of managed grasslands. Ecosystems. 16(6), 962–979 (2013) https://link.springer.com/article/10.1007/s10021-013-9660-5

    Article  Google Scholar 

  15. Erickson, B.E.: Interest in biochar surges. Chem. Eng. News. 94(10), 40–44 (2016) https://cen.acs.org/articles/94/i10/Interest-biochar-surges.html

    Article  Google Scholar 

  16. Garfield, L.: Manhattan plans to build a massive $1 billion wall and park to guard against the next inevitable superstorm. Business Insider (04.27.2018). https://www.businessinsider.com/new-york-city-flooding-manhattan-coastal-barriers-2018-4

  17. Gaunt, J.L., Lehmann, J.: Energy balance and emissions associated with biochar sequestration and pyrolysis bioenergy production. Environ. Sci. Technol. 42, 4152–4158 (2008) https://pubs.acs.org/doi/pdf/10.1021/es071361i

    Article  Google Scholar 

  18. Georgescu, M., et al.: Urban Adaptation can roll back warming of emerging megapolitan regions. PNAS. 111(8), 2909–2914 (2014). https://doi.org/10.1073/pnas.1322280111. http://www.pnas.org/content/111/8/2909

    Article  Google Scholar 

  19. Gilroy, W.G.: Changes proposed to New Orleans area levee systems. Science Daily (07.24.2013). https://www.sciencedaily.com/releases/2013/07/130724200557.htm

  20. Goodell, J.: The water will come, pp. 149–234. Little, Brown & Co, New York (2017)

    Google Scholar 

  21. Goodell, J.: The water will come, p. 238. Little, Brown & Co, New York). Chapter 11 (2017)

    Google Scholar 

  22. Goodell, J.: Rising waters: can a massive barrier save Venice from drowning. Yale Environment 360 (12.05.2017). https://e360.yale.edu/features/rising-waters-can-a-massive-sea-barrier-save-venice-from-drowning

  23. Graeter, K.A., et al.: Ice Core Records of West Greenland Melt and Climate Forcing. Geophys. Res. Lett. 45(7), 3164–3172 (2018) https://doi.org/10.1002/2017GL076641

    Article  Google Scholar 

  24. Gray, A.: Countries are announcing plans to phase out petrol and diesel cars. Is yours on the list? World Economic Forum (09.26.2018). https://www.weforum.org/agenda/2017/09/countries-are-announcing-plans-to-phase-out-petrol-and-diesel-cars-is-yours-on-the-list/

  25. Griffin, R.: The U.S. is losing ground in the race for energy efficiency. Bloomberg (06.26.2018). https://www.bloomberg.com/news/articles/2018-06-26/the-u-s-is-losing-ground-in-the-race-for-energy-efficiency

  26. Guckenheimer, J., Ottino, J.M.: Foundations for complex systems research in the physical sciences and engineering. NSF workshop report (September 2008). http://mixing.chem-biol-eng.northwestern.edu/docs/nsf_complex_systems_FINAL.pdf

  27. Harris, J.: Poyang Lake, Yangtze River Basin, China. In: Finlayson, C.M., Milton, G.R., Prentice, R.C., Davidson, N.C. (eds.) The Wetland Book, vol. 2018. Springer Nature Switzerland (2016) https://link.springer.com/referenceworkentry/10.1007%2F978-94-007-6173-5_34-2

    Google Scholar 

  28. Harvey, C.: Cement’s CO2 is everywhere. Will it sink climate goals? ClimateWire (07.09.2018). https://www.eenews.net/climatewire/stories/1060088153

  29. Harvey, C.: CO2 can sharpen extreme weather without higher temps. ClimateWire (06.21.2018). https://www.eenews.net/climatewire/2018/06/21/stories/1060085723

  30. Harvey, C.: Even 2 °C of warming could turn Earth into ‘hothouse.’ ClimateWire (08.07.2018). https://www.eenews.net/climatewire/2018/08/07/stories/1060092901

  31. Harvey, C.: Forests had a really bad year. ClimateWire (06.28.2018). https://www.eenews.net/climatewire/2018/06/28/stories/1060087181

  32. Harvey, C.: Ice is melting 3 times as fast as it did 25 years ago. ClimateWire (06.14.2018). https://www.eenews.net/climatewire/2018/06/14/stories/1060084477

  33. Harvey, C.: Manipulating sun rays won’t help crops grown. ClimateWire (08.09.2018). https://www.eenews.net/climatewire/2018/08/09/stories/1060093717

  34. Harvey, C.: Trees are losing their ability to soak up CO2. ClimateWire (07.13.2018). https://www.eenews.net/climatewire/2018/07/13/stories/1060088955

  35. Harvey, C.: Waters on track to rise for centuries, even if emissions stop. ClimateWire (02.21.2018). https://www.eenews.net/climatewire/2018/02/21/stories/1060074341

  36. Hobson, M.K.: Sea ice hits 2nd-lowest level in 39 years. ClimateWire (03.26.2018). https://www.eenews.net/climatewire/2018/03/26/stories/1060077383

  37. International Energy Agency: Global Energy & CO2 Status Report 2017 (OECD/IEA, March, 2018). https://www.iea.org/publications/freepublications/publication/GECO2017.pdf

  38. Irfan, U.: World must pull CO2 from the sky to meet Paris goals. ClimateWire (03.24.2017). https://www.eenews.net/climatewire/stories/1060052028/

  39. Ives, M.: As China’s largest freshwater Lake Shrinks, solution faces criticism. New York Times (12.28.2016). https://www.nytimes.com/2016/12/28/world/asia/china-lake-poyang-finless-porpoise.html

  40. Jevrejeva, A., et al.: Flood damage costs under the sea level rise with warming of 1.5 °C and 2 °C. Environ. Res. Lett. 13, 074014 (2018) http://iopscience.iop.org/article/10.1088/1748-9326/aacc76/pdf

    Article  Google Scholar 

  41. Katz, C.: To control floods, the Dutch turn to nature for inspiration. Yale Environmental 360 (02.21.2013). https://e360.yale.edu/features/to_control_floods_the_dutch_turn_to_nature_for_inspiration

  42. Keith, D.: A Case for Climate Engineering, 224 pp. MIT Press, Boston, MA (2013)

    Book  Google Scholar 

  43. Keith, D.W., et al.: Process for Capturing CO2 from the Atmosphere. Joule. 2(8), 1573–1594 (2018) https://www.cell.com/joule/fulltext/S2542-4351(18)30225-3

    Article  Google Scholar 

  44. Kelemen, P.B., Matter, J.: In situ carbonation of peridotite for CO2 storage. Science. 105(45), 17295–17300 (2008) http://www.pnas.org/content/105/45/17295

    Google Scholar 

  45. Kilmont, Z., et al.: The last decade of global anthropogenic sulfur dioxide: 2000–2011 emissions. Environ. Res. Lett. 8, 014003 (2013) http://iopscience.iop.org/article/10.1088/1748-9326/8/1/014003

    Article  Google Scholar 

  46. Kimmelman, M., Haner, J.: The Dutch have solutions to rising seas. The world is watching, in changing climate, changing cities. The New York Times (06.15.2017). https://www.nytimes.com/interactive/2017/06/15/world/europe/climate-change-rotterdam.html

  47. Kolbert, E.: Can carbon-dioxide removal save the world? Annals of Science, The New Yorker (11.20.2017). https://www.newyorker.com/magazine/2017/11/20/can-carbon-dioxide-removal-save-the-world

  48. Kumar, A., et al.: Direct Air Capture of CO2 by Physisorbent Materials. Angew. Chem. 54, 14372–14,377 (2015) https://onlinelibrary.wiley.com/doi/full/10.1002/anie.201506952

    Article  Google Scholar 

  49. Lazarus, R.J.: Super Wicked Problems and Climate Change: Restraining the Present to Liberate the Future. Cornell Law Rev. 94, 1153–1233 (2009) https://scholarship.law.georgetown.edu/cgi/viewcontent.cgi?referer=http://scholar.google.com/&httpsredir=1&article=1152&context=facpub

    Google Scholar 

  50. Lehmann, J.: Bio-energy in the black. Front. Ecol. Environ. 5(7), 381–387 (2007) https://esajournals.onlinelibrary.wiley.com/doi/full/10.1890/1540-9295%282007%295%5B381%3ABITB%5D2.0.CO%3B2

    Article  Google Scholar 

  51. Lindsay, R.: Climate change: global sea level. Climate.gov, NOAA (08.01.2018) https://www.climate.gov/news-features/understanding-climate/climate-change-global-sea-level

  52. Lohmann, U., Gasparini, B.: A cirrus cloud climate dial? Cirrus cloud seeding may help to reduce climate warming, but large uncertainties remain. Science. 357(6348), 248–249 (2017). https://doi.org/10.1126/science.aan3325. http://science.sciencemag.org/content/sci/357/6348/248.full.pdf

    Article  Google Scholar 

  53. McDonough, W., Braungart, M.: Cradle to Cradle. Farrar, Straus & Giroux, NY, NY (2002)

    Google Scholar 

  54. McGeehan, P., Hu, W.: Five years after sandy, are we better prepared? The New York Times (10.29.2017). https://www.nytimes.com/2017/10/29/nyregion/five-years-after-sandy-are-we-better-prepared.html

  55. McLeman, R.: Migration and displacement risks due to mean sea-level rise. Bulletin of the Atomic Scientists (05.04.2018). https://thebulletin.org/2018/05/migration-and-displacement-risks-due-to-mean-sea-level-rise/

  56. Mengel, M., et al.: Committed sea-level rise under the Paris Agreement and the legacy of delayed mitigation action. Nat. Commun. 9, 601 (2018) https://www.nature.com/articles/s41467-018-02985-8

    Article  Google Scholar 

  57. Moore, J.C., et al.: Geoengineering polar glaciers to slow sea-level rise. Nature. 555, 303–305 (2018) https://www.nature.com/magazine-assets/d41586-018-03036-4/d41586-018-03036-4.pdf

    Article  Google Scholar 

  58. Morton, O.: Nature. 447, 132–136 (2007) https://www.nature.com/articles/447132a.pdf

    Article  Google Scholar 

  59. Mulkern, A.: Rising sea levels will hit California harder than other places. Scientific American (04.27.2017). https://www.scientificamerican.com/article/rising-sea-levels-will-hit-california-harder-than-other-places/

  60. Narayan, S., et al.: The value of coastal wetlands for flood damage reduction in the Northeastern USA. Sci. Rep. 7, 9463 (2017) https://www.nature.com/articles/s41598-017-09269-z

    Article  Google Scholar 

  61. Olivier, D.W.: Cape Town’s water crisis: driven by politics more than drought. The Conversation (12.12.2017). https://theconversation.com/cape-towns-water-crisis-driven-by-politics-more-than-drought-88191

  62. Onishi, N., Sengupta, S.: Dangerously low on water, cape town now faces ‘day zero.’ The New York Times (01.30.2018). https://www.nytimes.com/2018/01/30/world/africa/cape-town-day-zero.html

  63. Parker, L.: Sea level rise will flood hundreds of cities in the near future. National Geographic (07.12.2017). https://news.nationalgeographic.com/2017/07/sea-level-rise-flood-global-warming-science/

  64. Pearce, F.: Rivers in the sky: how deforestation is affecting global water cycles. Yale Environment 360 (07.24.2018). https://e360.yale.edu/features/how-deforestation-affecting-global-water-cycles-climate-change

  65. Penn, I.: It’s the no. 1 power source, but natural gas faces headwinds. The New York Times (03.28.2018). https://www.nytimes.com/2018/03/28/business/energy-environment/natural-gas-power.html

  66. Pongratz, J., et al.: Crop yields in a geoengineered climate. Nat. Clim. Change. 2, 101–105 (2012) https://www.nature.com/articles/nclimate1373

    Article  Google Scholar 

  67. Proctor, J., et al.: Estimating global agricultural effects of geoengineering using volcanic eruptions. Nature. 560, 480–483 (2018) https://www.nature.com/articles/s41586-018-0417-3

    Article  Google Scholar 

  68. Rich, N.: Losing earth: the decade we almost stopped climate change. The New York Times (08.01.2018). https://www.nytimes.com/interactive/2018/08/01/magazine/climate-change-losing-earth.html

  69. Richardson, T.B., et al.: Understanding the Rapid Precipitation Response to CO2 and Aerosol Forcing on a Regional Scale. J. Clim. 29, 583–594 (2016). https://doi.org/10.1175/JCLI-D-15-0174.1. https://journals.ametsoc.org/doi/pdf/10.1175/JCLI-D-15-0174.1

    Article  Google Scholar 

  70. Robichaux, E.: Coast 2050’s lasting impacts on coastal restoration. Delta dispatches. Restore the Mississippi River Delta (11.05.2015). http://mississippiriverdelta.org/coast-2050s-lasting-impacts-on-coastal-restoration/

  71. Robock, A.: 20 reasons why geoengineering may be a bad idea. Bull. At. Sci. 64(2), 14–18 (59) (2008). https://doi.org/10.2968/064002006. http://climate.envsci.rutgers.edu/pdf/20Reasons.pdf

    Article  Google Scholar 

  72. Rockström, J., et al.: Science. 355(6331), 1269–1271 (2017) http://science.sciencemag.org/content/355/6331/1269.full

    Article  Google Scholar 

  73. Rossi, M.: Will a huge new flood barrier save Venice? CityLab (04.03.2018). https://www.citylab.com/environment/2018/04/will-a-huge-new-flood-barrier-save-venice/556226/

  74. Sachs J., et al.: Pathways to deep decarbonization, 2014 report, Deep Decarbonization Pathways Project, SDSN – IDDRI. (2014). http://deepdecarbonization.org/wp-content/uploads/2015/06/DDPP_Digit.pdf

  75. Sachs J., et al.: DDPP 2014 report (2014). http://deepdecarbonization.org/wp-content/uploads/2015/06/DDPP_Digit.pdf

  76. Sanz-Perez, E., et al.: Direct Capture of CO2 from Ambient Air. Chem. Rev. 116(19), 11840–11,876 (2016). https://doi.org/10.1021/acs.chemrev. https://pubs.acs.org/doi/full/10.1021/acs.chemrev.6b00173

    Article  Google Scholar 

  77. Schwartz, J.: Surrendering to rising seas. Scientific American (08.01.2018). https://www.scientificamerican.com/article/surrendering-to-rising-seas/

  78. Sengupta, S., Popovich, N.: Global warming in South Asia: 800 million at risk. The New York Times (06.28.2018). https://www.nytimes.com/interactive/2018/06/28/climate/india-pakistan-warming-hotspots.html?action=click&module=RelatedLinks&pgtype=Article

  79. Shugar, D.H., et al.: River piracy and drainage basin reorganization led by climate-driven glacier retreat. Nat. Geosci. 10, 370–375 (2017) https://www.nature.com/articles/ngeo2932

    Article  Google Scholar 

  80. Smith, P.: Soil carbon sequestration and biochar as negative emission technologies. Glob. Change Biol. 22, 1315–1324 (2016). https://doi.org/10.1111/gcb.13178.. https://onlinelibrary.wiley.com/doi/pdf/10.1111/gcb.13178

    Article  Google Scholar 

  81. Smith, P., et al.: Nat. Clim. Change. 6, 42–50 (2015) https://www.nature.com/articles/nclimate2870.pdf

    Article  Google Scholar 

  82. Smith, P., et al.: Biophysical and economic limits to negative CO2 emissions. Nat. Clim. Change. 6, 42–50 (2016) https://www.nature.com/articles/nclimate2870

    Article  Google Scholar 

  83. Smith, L., et al.: Chaos and the flow capture problem: polluting is easy, cleaning is hard. Phys. Rev. Appl. (2018) in press

    Google Scholar 

  84. Socolow, R.H., Pacala, S.W.: A Plan to Keep Carbon in Check. Sci. Am. 305, 968–972 (2006)

    Google Scholar 

  85. Socolow, R., et al.: Direct air capture of CO2 with chemicals. A technology assessment for the APS panel on public affairs. Am. Phys. Soc. (2011) https://infoscience.epfl.ch/record/200555/files/dac2011.pdf

  86. Steffen, W., et al.: Trajectories of the Earth System in the Anthropocene. PNAS. 115(33), 8252–2859 (2018) http://www.pnas.org/content/115/33/8252

    Article  Google Scholar 

  87. Strefler, J., et al.: Potential and costs of carbon dioxide removal by enhanced weathering of rocks. Environ. Res. Lett. 13, 034010 (2018) http://iopscience.iop.org/article/10.1088/1748-9326/aaa9c4/meta

    Article  Google Scholar 

  88. Struzik, E.: How warming is profoundly changing a great Northern Wilderness. Yale Environment 360 (04.25.2017). https://e360.yale.edu/features/how-warming-is-profoundly-changing-a-great-northern-wilderness

  89. Temple, J.: Harvard Scientists Moving Ahead on Plans for Atmospheric Geoengineering Experiments. MIT Technology Review (03.24.2017). https://www.technologyreview.com/s/603974/harvard-scientists-moving-ahead-on-plans-for-atmospheric-geoengineering-experiments/

  90. The IMBIE team: Mass balance of the Antarctic Ice Sheet from 1992 to 2017. Nature. 558, 219–222 (2018) https://www.nature.com/articles/s41586-018-0179-y

    Article  Google Scholar 

  91. Tollefson, J.: Sucking carbon dioxide from air is cheaper than scientists thought. Nature. 558, 173 (2018). https://doi.org/10.1038/d41586-018-05357-w. https://www.nature.com/articles/d41586-018-05357-w

    Article  Google Scholar 

  92. Trenberth, K.E.: Changes in precipitation with climate change. Clim. Res. 47, 123–138 (2011). https://doi.org/10.3354/cr00953. https://www.int-res.com/articles/cr_oa/c047p123.pdf

    Article  Google Scholar 

  93. Trenberth, K.E., Dai, A.: Effects of Mount Pinatubo volcanic eruption on the hydrological cycle as an analog of geoengineering. Geophys. Res. Lett. 34, L15702 (2007). https://doi.org/10.1029/2007GL030524. https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2007GL030524

    Article  Google Scholar 

  94. Usery, E.L., et al.: Chapter 2: Modeling Sea-level Rise and Surge in Low-lying Urban Areas using Spatial Data, Geographic Information Systems, and Animation Methods. In: Showalter, P., Lu, Y. (eds.) Geospatial techniques in urban hazard and disaster analysis, vol. 2019, pp. 11–30. Springer Netherlands (2010). https://doi.org/10.1007/978-90-481-2238-7_2. https://cegis.usgs.gov/pdf/sea_level_rise_text.pdf

    Chapter  Google Scholar 

  95. van Heerden, I.L.: Chapter 6: Setting the Stage for the Katrina Catastrophe: Environmental Degradation, Engineering Miscalculation, Ignoring Science and Human Mismanagement. In: Zakour, M.J., Mock, N.B., Kadetz, P. (eds.) Creating Katrina, Rebuilding Resilience, Lessons from New Orleans on Vulnerability and Resiliency, vol. 2018, pp. 133–158. Butterworth-Heinemann (2018) https://www.sciencedirect.com/science/article/pii/B9780128095577000065

    Chapter  Google Scholar 

  96. Velasquez-Manoff, M.: Can dirt save the earth. The New York Times Magazine (04.18.2018). https://www.nytimes.com/2018/04/18/magazine/dirt-save-earth-carbon-farming-climate-change.html

  97. Vitousek, S., et al.: Doubling of coastal flooding frequency within decades due to sea-level rise. Sci. Rep. 7, 1399 (2017) https://www.nature.com/articles/s41598-017-01362-7#citeas

    Article  Google Scholar 

  98. Wadhams, P.: The global impacts of rapidly disappearing arctic sea ice. Yale Environment 360 (09.26.2016). https://e360.yale.edu/features/as_arctic_ocean_ice_disappears_global_climate_impacts_intensify_wadhams

  99. Waldman, S.: Climate change is transforming, rerouting Arctic rivers. ClimateWire (04.19.2017). https://www.eenews.net/climatewire/2017/04/19/stories/1060053256

  100. Waldman, S.: Atmospheric CO2 sets record high. ClimateWire (05.03.2018). https://www.eenews.net/climatewire/2018/05/03/stories/1060080715

  101. Watts, J.: Arctic warming: scientists alarmed by ‘crazy’ temperatures. The Guardian (02.27.2018). https://www.theguardian.com/environment/2018/feb/27/arctic-warming-scientists-alarmed-by-crazy-temperature-rises

  102. Welch, C.: Carbon emissions had leveled off. Now they’re rising again. National Geographic (11.13.2017). https://news.nationalgeographic.com/2017/11/climate-change-carbon-emissions-rising-environment/

  103. Westerink J., et al.: Note on the Influence of the Mississippi River Gulf Outlet on Hurricane Induced Storm Surge in New Orleans and Vicinity. (2006). http://www.columbia.edu/itc/journalism/cases/katrina/Army/Army%20Corps%20of%20Engineers/Influence%20of%20the%20MRGO%20on%20Storm%20Surge.pdf

  104. Williamson, P.: Nature. 530, 153–155 (2016b) https://www.nature.com/news/emissions-reduction-scrutinize-co2-removal-methods-1.19318

    Article  Google Scholar 

  105. Wolosin, M., Harris, N.: Tropical forests and climate change: the latest science Working paper June 2018. World Resources Institute (2018) https://wriorg.s3.amazonaws.com/s3fs-public/ending-tropical-deforestation-tropical-forests-climate-change.pdf

    Google Scholar 

  106. Xi, F., et al.: Substantial global carbon uptake by cement carbonation. Nat. Geosci. 9, 880–883 (2016) https://www.nature.com/articles/ngeo2840

    Article  Google Scholar 

  107. Xia, L., et al.: Solar radiation management impacts on agriculture in China: A case study in the Geoengineering Model Intercomparison Project (GeoMI). J. Geophys. Res. Atmos. 119, 8695–8711 (2014). https://doi.org/10.1002/2013JD020630. https://agupubs.onlinelibrary.wiley.com/doi/epdf/10.1002/2013JD020630

    Article  Google Scholar 

  108. Zhang, Z., et al.: Analysis of Poyang Lake water balance and its indication of river-lake interaction. SpringerPlus. 5(1), 1555 (2016). https://doi.org/10.1186/s40064-016-3239-5. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5021641/

    Article  Google Scholar 

  109. Zhu, K., et al.: Limits to growth of forest biomass carbon sink under climate change. Nat. Commun. 9, 2709 (2018) https://www.nature.com/articles/s41467-018-05132-5

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kimberly A. Gray .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gray, K.A. (2021). Climate Action: The Feasibility of Climate Intervention on a Global Scale. In: Burns, W., Dana, D., Nicholson, S.J. (eds) Climate Geoengineering: Science, Law and Governance. AESS Interdisciplinary Environmental Studies and Sciences Series. Springer, Cham. https://doi.org/10.1007/978-3-030-72372-9_3

Download citation

Publish with us

Policies and ethics