Skip to main content

Formation, Reactivity Tuning and Kinetic Investigations of Iron “Dioxygen” Intermediate Complexes and Derivatives in Multiphase Flow Reactions

  • Chapter
  • First Online:
Reactive Bubbly Flows

Part of the book series: Fluid Mechanics and Its Applications ((FMIA,volume 128))

  • 795 Accesses

Abstract

A dinuclear iron complex system had been developed that is capable to activate dioxygen in the protic solvent methanol forming a peroxido complex that is stable for a few seconds at room temperature. A full kinetic analysis of this reaction could be performed using stopped-flow techniques and furthermore by applying a SuperFocus mixer. Formation of the peroxido complex could be followed either by UV/VIS absorbance or by fluorescence. A reaction kit was developed that allowed to start with an air stable iron(III) complex that could be activated by reducing it with ascorbic acid prior to the reaction with dioxygen several times without decomposition of the complex. This reaction could be furthermore observed in bubbly flow columns. However, so far, the reaction rates were not in the necessary time window to perform accurate measurements. Ligand modification allowed to increase the solubility of the starting material to such an extent that it was possible to react it in water. Unfortunately, under these conditions the peroxido complex was not detected anymore. Still, from the results of this work, it seems likely that the iron system described herein can be further optimized to make it work as an oxygenation catalyst in aqueous solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gawlig C, Schindler S, Becker S (2020) One-pot conversion of cyclohexane to adipic acid using a µ4-Oxido-copper cluster as catalyst together with hydrogen peroxide. Eur J Inorg Chem 2020(3):248–252. https://doi.org/10.1002/ejic.201901052

    Article  Google Scholar 

  2. Ritz J, Fuchs H, Kiercka H, Moran WC (2000) Caprolactam. In: Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH Verlag GmbH

    Google Scholar 

  3. Jasniewski AJ, Que L Jr (2018) Dioxygen activation by nonheme diiron enzymes: diverse dioxygen adducts, high-valent intermediates, and related model complexes. Chem Rev 118(5):2554–2592. https://doi.org/10.1021/acs.chemrev.7b00457

    Article  Google Scholar 

  4. Elwell CE, Gagnon NL, Neisen BD, Dhar D, Spaeth AD, Yee GM, Tolman WB (2017) Copper-oxygen complexes revisited: structures, spectroscopy, and reactivity. Chem Rev 117(3):2059–2107. https://doi.org/10.1021/acs.chemrev.6b00636

    Article  Google Scholar 

  5. Strukul G (2013) Catalytic oxidations with hydrogen peroxide as oxidant. Springer, Netherlands

    Google Scholar 

  6. Olah GA, Goeppert A, Prakash GKS (2006) Beyond oil and gas: the methanol economy. Wiley

    Google Scholar 

  7. Ross MO, MacMillan F, Wang J, Nisthal A, Lawton TJ, Olafson BD, Mayo SL, Rosenzweig AC, Hoffman BM (2019) Particulate methane monooxygenase contains only mononuclear copper centers. Sci 364(6440):566–570. https://doi.org/10.1126/science.aav2572

  8. Murrell JC, Smith TJ (2010) Biochemistry and molecular biology of methane monooxygenase. In: Timmis KN (ed) Handbook of hydrocarbon and lipid microbiology. Springer, Berlin, Heidelberg

    Google Scholar 

  9. Wang VCC, Maji S, Chen PPY, Lee HK, Yu SSF, Chan SI (2017) Alkane oxidation: methane monooxygenases, related enzymes, and their biomimetics. Chem Rev 117(13):8574–8621. https://doi.org/10.1021/acs.chemrev.6b00624

    Article  Google Scholar 

  10. Que L, Dong Y (1996) Modeling the oxygen activation chemistry of methane monooxygenase and ribonucleotide reductase. Acc Chem Res 29(4):190–196. https://doi.org/10.1021/ar950146g

    Article  Google Scholar 

  11. Que L (2017) 60 years of dioxygen activation. J Biol Inorg Chem 22(2):171–173. https://doi.org/10.1007/s00775-017-1443-6

    Article  MathSciNet  Google Scholar 

  12. Würtele C, Gaoutchenova E, Harms K, Holthausen MC, Sundermeyer J, Schindler S (2006) Crystallographic characterization of a synthetic 1: 1 end-on copper dioxygen adduct complex. Angew Chem Int Ed 45(23):3867–3869. https://doi.org/10.1002/anie.200600351

    Article  Google Scholar 

  13. Weitzer M, Schatz M, Hampel F, Heinemann FW, Schindler S (2002) Low temperature stopped-flow studies in inorganic chemistry. J Chem Soc Dalton Trans 2002(5):686–694. https://doi.org/10.1039/b107927c

  14. Zhang CX, Kaderli S, Costas M, Kim E-I, Neuhold Y-M, Karlin KD, Zuberbühler AD (2003) Copper(I)−dioxygen reactivity of [(L)CuI]+ (L = Tris(2-pyridylmethyl)amine): kinetic/thermodynamic and spectroscopic studies concerning the formation of Cu−O2 and Cu2−O2 adducts as a function of solvent medium and 4-pyridyl ligand substituent variations. Inorg Chem 42(6):1807–1824. https://doi.org/10.1021/ic0205684

    Article  Google Scholar 

  15. Halfen JA, Mahapatra S, Wilkinson EC, Kaderli S, Young VG Jr, Que L Jr (1996) Reversible cleavage and formation of the dioxygen O–O bond within a dicopper complex. Sci 271(5254):1397–1400. https://doi.org/10.1126/science.271.5254.1397

  16. Jacobsen RR, Tyeklár Z, Farooq A, Karlin KD, Liu S, Zubieta J (1988) A copper-oxygen (Cu2-O2) complex. Crystal structure and characterization of a reversible dioxygen binding system. J Am Chem Soc 110(11):3690–3692. https://doi.org/10.1021/ja00219a071

  17. Würtele C, Sander O, Lutz V, Waitz T, Tuczek F, Schindler S (2009) Aliphatic C–H bond oxidation of toluene using copper peroxo complexes that are stable at room temperature. J Am Chem Soc 131(22):7544–7545. https://doi.org/10.1021/ja902327s

    Article  Google Scholar 

  18. Ghosh A, Almlöf J, Que L Jr (1996) Electronic structure of non-heme high-valent oxoiron complexes with the unprecedented [Fe2(μ-O)2]3+ Core. Angew Chem Int Ed 35(7):770–772. https://doi.org/10.1002/anie.199607701

  19. Kryatov SV, Rybak-Akimova EV, MacMurdo VL, Que L (2001) A mechanistic study of the reaction between a diiron(II) complex [FeII2(μ-OH)2(6-Me3-TPA)2]2+ and O2 to form a diiron(III) peroxo complex. Inorg Chem 40(10):2220–2228. https://doi.org/10.1021/ic001300k

  20. Que JL, Tolman WB (2002) Bis(μ-oxo)dimetal “diamond” cores in copper and iron complexes relevant to biocatalysis. Angew Chem Int Ed 41(7):1114–1137. https://doi.org/10.1002/1521-3773(20020402)41:7%3c1114::AID-ANIE1114%3e3.0.CO;2-6

    Article  Google Scholar 

  21. Shu L, Nesheim JC, Kauffmann K, Münck E, Lipscomb JD, Que L Jr (1997) An Fe2IVO2 diamond core structure for the key intermediate Q of methane monooxygenase. Sci 275(5299):515–518. https://doi.org/10.1126/science.275.5299.515

  22. Hsu H-F, Dong Y, Shu L, Young VG, Que L (1999) Crystal structure of a synthetic high-valent complex with an Fe2(μ-O)2 diamond core. Implications for the core structures of methane monooxygenase intermediate q and ribonucleotide reductase intermediate X. J Am Chem Soc 121(22):5230–5237. https://doi.org/10.1021/ja983666q

  23. Ross MO, Rosenzweig AC (2017) A tale of two methane monooxygenases. J Biol Inorg Chem 22(2):307–319. https://doi.org/10.1007/s00775-016-1419-y

    Article  Google Scholar 

  24. Schaub S, Miska A, Becker J, Zahn S, Mollenhauer D, Sakshath S, Schünemann V, Schindler S (2018) Synthesis of an iron(IV) aqua-oxido complex using ozone as an oxidant. Angew Chem Int Ed 57(19):5355–5358. https://doi.org/10.1002/anie.201800475

    Article  Google Scholar 

  25. de Visser SP, Rohde J-U, Lee Y-M, Cho J, Nam W (2013) Intrinsic properties and reactivities of mononuclear nonheme iron–oxygen complexes bearing the tetramethylcyclam ligand. Coord Chem Rev 257(2):381–393. https://doi.org/10.1016/j.ccr.2012.06.002

    Article  Google Scholar 

  26. Hong S, Lee Y-M, Ray K, Nam W (2017) Dioxygen activation chemistry by synthetic mononuclear nonheme iron, copper and chromium complexes. Coord Chem Rev 334:25–42. https://doi.org/10.1016/j.ccr.2016.07.006

    Article  Google Scholar 

  27. McDonald AR, Que L (2013) High-valent nonheme iron-oxo complexes: synthesis, structure, and spectroscopy. Coord Chem Rev 257(2):414–428. https://doi.org/10.1016/j.ccr.2012.08.002

    Article  Google Scholar 

  28. Becker M, Heinemann FW, Knoch F, Donaubauer W, Liehr G, Schindler S, Golub G, Cohen H, Meyerstein D (2000) Syntheses, structures and properties of copper(I) and copper(II) complexes of the ligand N,N′-bis 2′-(dimethylamino)ethyl-N,N′-dimethylethane-1,2-diamine (Me6trien). Eur J Inorg Chem 2000(4):719–726. https://doi.org/10.1002/(SICI)1099-0682(200004)2000:4%3C719::AID-EJIC719%3E3.0.CO;2-N

  29. Hazell A, McKenzie CJ, Nielsen LP, Schindler S, Weitzer M (2002) Mononuclear non heme iron(III) peroxide complexes: syntheses, characterisation,mass spectrometric and kinetic studies. J Chem Soc Dalton Trans 2002(3):310–317. https://doi.org/10.1039/b103844n

  30. Kaizer J, Klinker EJ, Oh NY, Rohde J-U, Song WJ, Stubna A, Kim J, Münck E, Nam W, Que L (2004) Nonheme FeIVO complexes that can oxidize the C−H bonds of cyclohexane at room temperature. J Am Chem Soc 126(2):472–473. https://doi.org/10.1021/ja037288n

  31. Nebe T, Beitat A, Wuertele C, Duecker-Benfer C, van Eldik R, McKenzie CJ, Schindler S (2010) Reinvestigation of the formation of a mononuclear Fe(III) hydroperoxido complex using high pressure kinetics. Dalton Trans. 39(33):7768–7773. https://doi.org/10.1039/c0dt00247j

    Article  Google Scholar 

  32. Kryatov SV, Rybak-Akimova EV, MacMurdo VL, Que L Jr (2001) A mechanistic study of the reaction between a diiron(II) complex. Inorg Chem 40(10):2220–2228. https://doi.org/10.1021/ic001300k

  33. Specht P, Oßberger M, Klüfers P, Schindler S (2020) Kinetic studies on the reaction of NO with iron(II) complexes using low temperature stopped-flow techniques. Dalton Trans 49(27):9480–9486. https://doi.org/10.1039/D0DT01764G

  34. Feig AL, Becker M, Schindler S, van Eldik R, Lippard SJ (1996) Mechanistic studies of the formation and decay of diiron(III) peroxo complexes in the reaction of diiron(II) precursors with dioxygen. Inorg Chem 35(9):2590–2601. https://doi.org/10.1021/ic951242g

    Article  Google Scholar 

  35. Feig AL, Lippard SJ (1994) Reactions of non-heme iron(II) centers with dioxygen. Chem Rev 94(3):759–805. https://doi.org/10.1021/cr00027a011

  36. Dong Y, Menage S, Brennan BA, Elgren TE, Jang HG, Pearce LL, Que L (1993) Dioxygen binding to diferrous centers. Models for diiron-oxo proteins. J Am Chem Soc 115(5):1851–1859. https://doi.org/10.1021/ja00058a033

  37. Dong Y, Yan S, Young VG Jr, Que L Jr (1996) Crystal structure analysis of a synthetic non-heme diiron-O2Adduct: insight into the mechanism of oxygen activation. Angew Chem Int Ed 35(6):618–620. https://doi.org/10.1002/anie.199606181

    Article  Google Scholar 

  38. Westerheide L, Müller FK, Than R, Krebs B, Dietrich J, Schindler S (2001) Syntheses and structural characterization of dinuclear and tetranuclear iron(III) complexes with dinucleating ligands and their reactions with hydrogen peroxide. Inorg Chem 40(8):1951–1961. https://doi.org/10.1021/ic0009371

  39. Nizova GV, Krebs B, Süss-Fink G, Schindler S, Westerheide L, Cuervo LG, Shul’pin GB (2002) Hydroperoxidation of methane and other alkanes with H2O2 catalyzed by a dinuclear iron complex and an amino acid. Tetrahedron 58(45):9231–9237. https://doi.org/10.1016/s0040-4020(02)01182-1

  40. Miska A, Schurr D, Rinke G, Dittmeyer R, Schindler S (2018) Frommodel compounds to applications: Kinetic studies on the activation of dioxygen using an iron complex in a SuperFocus mixer. Chem Eng Sci 190:459–465. https://doi.org/10.1016/j.ces.2018.05.064

  41. Rollbusch P, Bothe M, Becker M, Ludwig M, Grünewald M, Schlüter M, Franke R (2015) Bubble columns operated under industrially relevant conditions—current understanding of design parameters. Chem Eng Sci 126:660–678. https://doi.org/10.1016/j.ces.2014.11.061

  42. Schurr D, Strassl F, Liebhäuser P, Rinke G, Dittmeyer R, Herres-Pawlis S (2016) Decay kinetics of sensitive bioinorganic species in a SuperFocus mixer at ambient conditions. React Chem Eng 1(5):485–493. https://doi.org/10.1039/C6RE00119J

    Article  Google Scholar 

  43. Lerch M, Weitzer M, Stumpf T-D, Laurini L, Hoffmann A, Becker J, Miska A, Göttlich R, Herres-Pawlis S, Schindler S (2020) Kinetic investigation of the reaction of dioxygen with the copper(I) complex [Cu(PimiPr2)(CH3CN)]CF3SO3 (PimiPr2 = tris[2-(1,4-diisopropylimidazolyl)]phosphine). Eur J Inorg Chem 2020(33):3143–3150. https://doi.org/10.1002/ejic.202000462

    Article  Google Scholar 

  44. Hoffmann A, Wern M, Hoppe T, Witte M, Haase R, Liebhäuser P, Glatthaar J, Herres-Pawlis S, Schindler S (2016) Hand in hand: experimental and theoretical investigations into the reactions of copper(I) mono- and bis(guanidine) complexes with dioxygen. Eur J Inorg Chem 2016(29):4744–4751. https://doi.org/10.1002/ejic.201600906

  45. Miska A, Norbury J, Lerch M, Schindler S (2017) Dioxygen activation: potential future technical applications in reactive bubbly flows. Chem Eng Technol 40(8):1522–1526. https://doi.org/10.1002/ceat.201600684

    Article  Google Scholar 

  46. Kück UD, Schlüter M, Räbiger N (2012) Local measurement of mass transfer rate of a single bubble with andwithout a chemical reaction. J Chem Eng 45(9):708–712. https://doi.org/10.1252/jcej.12we059

  47. Avenier F, Herrero C, Leibl W, Desbois A, Guillot R, Mahy J-P, Aukauloo A (2013) Photoassisted generation of a dinuclear iron(III) peroxo species and oxygen-atom transfer. Angew Chem Int Ed 52(13):3634–3637. https://doi.org/10.1002/anie.201210020

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)—priority program SPP1740 “Reactive Bubbly Flows” (237189010) for the project SCHI 377/13-1/2 (256663228).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siegfried Schindler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Miska, A., Specht, P., Lerch, M., Schindler, S. (2021). Formation, Reactivity Tuning and Kinetic Investigations of Iron “Dioxygen” Intermediate Complexes and Derivatives in Multiphase Flow Reactions. In: Schlüter, M., Bothe, D., Herres-Pawlis, S., Nieken, U. (eds) Reactive Bubbly Flows. Fluid Mechanics and Its Applications, vol 128. Springer, Cham. https://doi.org/10.1007/978-3-030-72361-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-72361-3_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-72360-6

  • Online ISBN: 978-3-030-72361-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics