Skip to main content

Control of the Formation and Reaction of Copper-Oxygen Adduct Complexes in Multiphase Streams

  • Chapter
  • First Online:
Reactive Bubbly Flows

Part of the book series: Fluid Mechanics and Its Applications ((FMIA,volume 128))

Abstract

Bioinorganic copper complexes can activate dioxygen and transfer it to substrates under very mild reaction conditions. By the choice of ligand, the rate of oxygen activation, stability of the Cu/O2 species and rate of subsequent reaction can be tuned. Moreover, the spectroscopic response for spatially and temporarily resolved investigations can be tailored to the demands within the SPP1740. Based on the guanidine donor function, we developed several generations of guanidine systems for O2 transfer in the SPP1740, starting with the classic btmgp bisguanidine over fluorescent bisguanidines (based on the toluene backbone) to highly efficient catalytically active aromatic hybrid guanidine systems. These systems allow the efficient transformation of a plethora of phenolic substrates to the corresponding quinones. To trap the highly reactive quinones, we used 1,2-phenylenediamine for the transformation into phenazines which can be isolated. In parallel, we investigated simple ammonia and bisamine systems for their utilization in Taylor bubbles and reaction apparatuses in the SPP. Selected systems have also been studied by stopped flow spectroscopy and in the SuperFocus mixer, as well as theoretical methods for the details of the oxygen activation process. This chapter lays the chemical foundation for the application of Cu/O2 systems in Chapters “Determination of Kinetics for Reactive Bubbly Flows Using SuperFocus Mixers”–“Investigation of Reactive Bubbly Flows in Technical Apparatuses”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hamann JN, Rolff M, Tuczek F (2015) Monooxygenation of an appended phenol in a model system of tyrosinase: implications on the enzymatic reaction mechanism. Dalton Trans 44:3251–3258

    Article  Google Scholar 

  2. Xiao Y, Hu W, Sun S, Yu J-T, Cheng J (2019) Recent advances in the synthesis of acridines and phenazines. Synlett 30:2113–2122

    Article  Google Scholar 

  3. Herres-Pawlis S, Verma P, Haase R, Kang P, Lyons CT, Wasinger EC, Flörke U, Henkel G, Stack TDP (2009) Phenolate hydroxylation in a bis(μ-oxo)dicopper(III) complex: lessons from the guanidine/amine series. J Am Chem Soc 131:1154–1169

    Article  Google Scholar 

  4. Strassl F, Grimm-Lebsanft B, Rukser D, Biebl F, Biednov M, Brett C, Timmermann R, Metz F, Hoffmann A, Rübhausen M, Herres-Pawlis S (2017) Oxygen activation by copper complexes with an aromatic bis(guanidine) ligand. Eur J Inorg Chem:3350–3359

    Google Scholar 

  5. Paul M, Teubner M, Grimm-Lebsanft B, Golchert C, Meiners Y, Senft L, Keisers K, Liebhäuser P, Rösener T, Biebl F, Buchenau S, Naumova M, Murzin V, Krug R, Hoffmann A, Pietruszka J, Ivanović-Burmazović I, Rübhausen M, Herres-Pawlis S (2020) Exceptional substrate diversity in oxygenation reactions catalyzed by a Bis(μ-oxo) copper complex. Chem Eur J 26:7556–7562

    Article  Google Scholar 

  6. Lewis AL, Tolman WB (2004) Reactivity of dioxygen−copper systems. Chem Rev:1047–1076

    Google Scholar 

  7. Mirica LM, Ottenwaelder X, Stack TDP (2004) Structure and spectroscopy of copper−dioxygen complexes. Chem Rev 104:1013–1045

    Article  Google Scholar 

  8. Schindler S (2000) Reactivity of Copper(I) complexes towards dioxygen. Eur J Inorg Chem:2311–2326

    Google Scholar 

  9. Hatcher L, Karlin KD (2004) Oxidant types in copper-dioxygen chemistry: the ligand coordination defines the Cu(n)-O2 structure and subsequent reactivity. J Biol Inorg Chem 9:669–683

    Article  Google Scholar 

  10. Rolff M, Schottenheim J, Decker H, Tuczek F (2011) Copper–O2 reactivity of tyrosinase models towards external monophenolic substrates: molecular mechanism and comparison with the enzyme. Chem Soc Rev 40:4077–4098

    Article  Google Scholar 

  11. Citek C, Herres-Pawlis S, Stack TDP (2015) Low temperature syntheses and reactivity of Cu2O2 active-site models. Acc Chem Res 48:2424–2433

    Article  Google Scholar 

  12. Decker H, Dillinger H, Tuczek F (2000) How Does tyrosinase work? Recent insights from model chemistry and structural biology. Chem Int Ed 39:1591–1595

    Article  Google Scholar 

  13. Matoba Y, Kumagai T, Yamamoto A, Yoshitsu H, Sugiyama M (2006) Crystallographic evidence that the dinuclear copper center of tyrosinase is flexible during catalysis. J Biol Chem 281:8981–8990

    Article  Google Scholar 

  14. Mauracher SG, Molitor C, Al-Oweini R, Kortz U, Rompel A (2014) Latent and active abPPO4 mushroom tyrosinase cocrystallized with hexatungstotellurate(VI) in a single crystal. Acta Crystallogr D70:2301–2315

    Google Scholar 

  15. Bijelic A, Pretzler M, Molitor C, Zekiri F, Rompel A (2015) The structure of a plant tyrosinase from walnut leaves reveals the importance of “substrate-guiding residues” for enzymatic specificity. Angew Chem 127:14889–14893; Angew Chem Int End 54:14677–14680

    Google Scholar 

  16. Halfen JA, Mahapatra S, Wilkinson EC, Kaderli S, Young VG, Que LJ, Zuberbühler AD, Tolman WB (1996) Reversible cleavage and formation of the dioxygen O–O bond within a dicopper complex. Science 271:1397–1400

    Article  Google Scholar 

  17. Tolman WB (1997) Making and breaking the dioxygen O–O bond: new insights from studies of synthetic copper complexes. Acc Chem Res 30:227–237

    Article  Google Scholar 

  18. Karlin KD, Cruse RW, Gultneh Y, Hayes JC, Zubieta J (1984) Peroxide coordination to a dicopper(II) center. Dioxygen binding to a structurally characterized phenoxide-bridged binuclear copper(I) complex. J Am Chem Soc 106:3372–3374

    Google Scholar 

  19. Jacobson RR, Tyeklar Z, Farooq A, Karlin KD, Liu S, Zubieta J (1988) A copper-oxygen (Cu2-O2) complex. Crystal structure and characterization of a reversible dioxygen binding system. J Am Chem Soc 110:3690–3692

    Google Scholar 

  20. Kieber-Emmons MT, Ginsbach JW, Wick PK, Lucas HR, Helton ME, Lucchese B, Suzuki M, Zuberbühler AD, Karlin KD, Solomon EI (2014) Observation of a Cu(II)2(μ-1,2-peroxo)/Cu(III)2(μ-oxo)2 equilibrium and its implications for copper-dioxygen reactivity. Angew Chem Int Ed 53:4935–4939

    Article  Google Scholar 

  21. Elwell CE, Gagnon NL, Neisen BD, Dhar D, Spaeth AD, Yee G, Tolman M, William B (2017) Copper-oxygen complexes revisited: structures, spectroscopy, and reactivity. Chem Rev 117:2059–2107

    Article  Google Scholar 

  22. Liebhäuser P, Hoffmann A, Herres-Pawlis S (2016) Tyrosinase models: synthesis, spectroscopy, theory, and catalysis. Ref Modul Chem Mol Sci Chem Eng:1–22

    Google Scholar 

  23. Hoffmann A, Wern M, Hoppe T, Witte M, Haase R, Liebhäuser P, Glatthaar J, Herres-Pawlis S, Schindler S (2016) Hand in hand: experimental and theoretical investigations into the reactions of copper(I) mono- and bis(guanidine) complexes with dioxygen. Eur J Inorg Chem:4744–4751

    Google Scholar 

  24. Metz M, Solomon EI (2001) Dioxygen binding to deoxyhemocyanin: electronic structure and mechanism of the spin-forbidden two-electron reduction of O2. J Am Chem Soc 123:4938–4950

    Article  Google Scholar 

  25. Herres S, Heuwing AJ, Flörke U, Schneider J, Henkel G (2005) Hydroxylation of a methyl group: synthesis of [Cu2(btmmO)2I]+ and of [Cu2(btmmO)2]2+ containing the novel ligand {bis(trimethylmethoxy)guanidino}propane (btmmO) by copper-assisted oxygen activation. Inorg Chim Acta 358:1089–1095

    Article  Google Scholar 

  26. Herres-Pawlis S, Berth G, Wiedemeier V, Schmidt L, Zrenner A, Warnecke H-J (2010) Oxygen sensing by fluorescence quenching of [Cu(btmgp)I]. J Lumin 130:1958–1962

    Article  Google Scholar 

  27. Schurr D, Strassl F, Liebhäuser P, Rinke G, Dittmeyer R, Herres-Pawlis S (2016) Decay kinetics of sensitive bioinorganic species in a SuperFocus mixer at ambient conditions. React Chem Eng 1:485–493

    Article  Google Scholar 

  28. Felis F, Strassl F, Laurini L, Dietrich N, Billet A-M, Roig V, Herres-Pawlis S, Loubière K (2019) Using a bio-inspired copper complex to investigate reactive mass transfer around an oxygen bubble rising freely in a thin-gap cell. Chem Eng Sci 207:1256–1269

    Article  Google Scholar 

  29. Benders S, Strassl F, Fenger B, Blümich B, Herres-Pawlis S, Küppers M (2018) Imaging of copper oxygenation reactions in a bubble flow. Magn Reson Chem 56:826–830

    Article  Google Scholar 

  30. Hoffmann A, Citek C, Binder S, Goos A, Rübhausen M, Troeppner O, Ivanovic-Burmazovic I, Wasinger EC, Stack TDP, Herres-Pawlis S (2013) Catalytic phenol hydroxylation with dioxygen: extension of the tyrosinase mechanism beyond the protein matrix, Angew Chem Int Ed 52:5398–5401; Katalytische Phenolhydroxylierung mit Sauerstoff: Substratvielfalt jenseits der Proteinmatrix von Tyrosinase, Angew Chem 125:5508–5512

    Google Scholar 

  31. Liebhäuser P, Keisers K, Hoffmann A, Schnappinger T, Sommer I, Thoma A, Wilfer C, Schoch R, Stührenberg K, Bauer M, Dürr M, Ivanović-Burmazović I, Herres-Pawlis S (2017) Record Broken: A copper peroxide complex with enhanced stability and faster hydroxylation catalysis. Chem Eur J 23:12171–12183

    Article  Google Scholar 

  32. Wilfer C, Liebhäuser P, Hoffmann A, Erdmann H, Grossmann O, Runtsch L, Paffenholz E, Schepper R, Dick R, Bauer M, Dürr M, Ivanović-Burmazović I, Herres-Pawlis S (2015) Efficient biomimetic hydroxylation catalysis with a bis(pyrazolyl)imidazolylmethane copper peroxide complex. Chem Eur J 21:17639–17649

    Article  Google Scholar 

  33. Strassl F, Timmermann J, Schlüter M, Herres-Pawlis S (2016) Kinetik der Sauerstoffaktivierung. GIT Labor-Fachzeitschrift:39–41

    Google Scholar 

  34. Mirica LM, Vance M, Rudd DJ, Hedman B, Hodgson KO, Solomon EI, Stack TDP (2005) Tyrosinase reactivity in a model complex: an alternative hydroxylation mechanism. Science 308:1890–1892

    Article  Google Scholar 

  35. Holt BTO, Vance MA, Mirica LM, Heppner DE, Stack TDP, Solomon EI (2009) Reaction coordinate of a functional model of tyrosinase: spectroscopic and computational characterization. J Am Chem Soc 131:6421–6438

    Article  Google Scholar 

  36. Verma P, Weir J, Mirica L, Stack TDP (2011) Tale of a twist: magnetic and optical switching in copper(ii) semiquinone complexes. Inorg Chem 50:9816–9825

    Article  Google Scholar 

  37. Esguerra K, Lumb J-P (2015) Adapting Melanogenesis to a regioselective C–H functionalization of phenols. Synlett 26:2731–2738

    Article  Google Scholar 

  38. Huang Z, Askari MS, Esguerra KVN, Dai T-Y, Kwon O, Ottenwaelder X, Lumb J-P (2016) A bio-inspired synthesis of oxindoles by catalytic aerobic dual C–H functionalization of phenols. Chem Sci 7:358–369

    Article  Google Scholar 

  39. Esguerra KVN, Fall Y, Lumb J-P (2014) A biomimetic catalytic aerobic functionalization of phenols. Angew Chem Int Ed 53:5877–5881; Angew Chem 126:5987–5991

    Google Scholar 

  40. Pohl S, Harmjanz M, Schneider J, Saak W, Henkel G (2000) 1,3-Bis(N,N,N′,N′-tetramethylguanidino)propane: synthesis, characterization and bonding properties of the first bidentate, peralkylated guanidine ligand. J Chem Soc Dalton Trans:3473–3479

    Google Scholar 

  41. Herres-Pawlis S, Neuba A, Seewald O, Seshadri T, Egold H, Flörke U, Henkel G (2005) A library of peralkylated bis-guanidine ligands for use in biomimetic coordination chemistry. Eur J Org Chem:4879–4890

    Google Scholar 

  42. Strassl F, Hoffmann A, Grimm-Lebsanft B, Rukser D, Biebl F, Tran MA, Metz F, Rübhausen M, Herres-Pawlis S (2018) Fluorescent bis(guanidine) copper complexes as precursors for hydroxylation catalysis. Inorganics 6:114

    Article  Google Scholar 

  43. https://www.sigmaaldrich.com/catalog/product/aldrich/348015?lang=de&region=DE

  44. https://www.tcichemicals.com/DE/de/p/A1435

  45. https://www.fishersci.at/shop/products/4-aminobenzylamine-98-acros-organics-1/10080173/en

  46. Strassl F (2019) Copper dioxygen complexes for multiphase flows. Ph.D. thesis, RWTH Aachen 2019

    Google Scholar 

  47. Land EJ, Ramsden CA, Riley PA (2003) Tyrosinase autoactivation and the chemistry of ortho-quinone amines. Acc Chem Res 36:300–308

    Article  Google Scholar 

  48. Laurini L, Hoffmann A, Herres-Pawlis S Manuscript in preparation

    Google Scholar 

  49. https://nl.vwr.com/store/product/23127406/7-hydroxyindool-95

  50. https://www.abcr.de/shop/de/catalogsearch/advanced/result/?q=2380-84-9

  51. Herres-Pawlis R, Haase P, Verma A, Hoffmann P, Kang TDP (2015) Stack: Formation of hybrid guanidine-stabilized bis(μ-oxo)dicopper cores in solution: electronic and steric perturbations. Eur J Inorg Chem 32:5426–5436

    Article  Google Scholar 

  52. Paul M, Hoffmann A, Herres-Pawlis S (2021) Room temperature stable multitalent: highly reactive and versatile copper guanidine complexes in oxygenation reactions. J Biol Inorg Chem. https://doi.org/10.1007/s00775-021-01849-9

  53. Paul M, Teubner M, Grimm-Lebsanft B, Buchenau S, Hoffmann A, Rübhausen M, Herres-Pawlis S (2021) Influence of the amine donor on hybrid guanidine-stabilized bis(μ-oxido) dicopper(III) complexes and their tyrosinase-like oxygenation activity towards polycyclic aromatic alcohols, manuscript in preparation

    Google Scholar 

Download references

Acknowledgements

This work was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)—priority program SPP1740 “Reactive Bubbly Flows” (237189010) for the project HE 5480/10-2 (256729061).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sonja Herres-Pawlis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Laurini, L., Paul, M., Hoffmann, A., Herres-Pawlis, S. (2021). Control of the Formation and Reaction of Copper-Oxygen Adduct Complexes in Multiphase Streams. In: Schlüter, M., Bothe, D., Herres-Pawlis, S., Nieken, U. (eds) Reactive Bubbly Flows. Fluid Mechanics and Its Applications, vol 128. Springer, Cham. https://doi.org/10.1007/978-3-030-72361-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-72361-3_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-72360-6

  • Online ISBN: 978-3-030-72361-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics