Skip to main content

Visualization and Quantitative Analysis of Consecutive Reactions in Taylor Bubble Flows

  • Chapter
  • First Online:
Reactive Bubbly Flows

Abstract

Taylor bubbles are bubbles that are filling a capillary fixed or rising in a liquid flow. Due to their well-defined size, shape and velocity the flow field around Taylor bubbles is well controllable. Furthermore, only a small amount of gas and liquid is required for experiments, making the study of Taylor bubbles simple and safe. In this chapter, Taylor bubbles are used to study mass transfer with chemical reaction in dependency of various fluid dynamic conditions. Experimental setups are presented to study chemical reactions at Taylor bubbles and in Taylor flows. Furthermore, a Taylor bubble benchmark experiment is presented and used for the validation of numerical simulations that are performed with a front tracking technique in a FEM framework to enable a high resolution of interfaces and boundary layers. It is shown that the interplay of mass transfer, hydrodynamics and chemical reactions can be successfully determined using experimental and numerical methods presented. It is shown further how the selectivity of competitive-consecutive reactions can be influenced by the local fluid dynamics, especially in the wake of a Taylor bubble or within the liquid slug in a Taylor flow. 

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kastens S, Hosoda S, Schlüter M, Tomiyama A (2015) Mass transfer from single Taylor Bubbles in minichannels. Chem Eng Technol 38:1925–1932. https://doi.org/10.1002/ceat.201500065

    Article  Google Scholar 

  2. Kameke AV, Kastens S, Rüttinger S, Herres-Pawlis S, Schlüter M (2019) How coherent structures dominate the residence time in a bubble wake: an experimental example. Chem Eng Sci 207:317–326. https://doi.org/10.1016/j.ces.2019.06.033

  3. Compart C (2017) Design of an experimental setup for the analysis of mass transfer on reactive Taylor-Bubbles, Masterthesis, Hamburg University of Technology

    Google Scholar 

  4. Kastens S, Timmermann J, Strassl F, Rampmaier RF, Hoffmann A, Herres-Pawlis S, Schlüter M (2017) Test system for the investigation of reactive Taylor Bubbles. Chem Eng Technol 40:1494–1501. https://doi.org/10.1002/ceat.201700047

    Article  Google Scholar 

  5. Hayashi K, Hosoda S, Tryggvason, G, Tomiyama A (2014) Effect of shape oscillation on mass transfer from a Taylor bubble. Int J Multiph Flow 58:236–245

    Google Scholar 

  6. Meyer C, Hoffmann M, Schlüter M (2014) Micro-PIV analysis of gas–liquid Taylor flow in a vertical oriented square shaped fluidic channel. Int J Multiph Flow 67:140–148. https://doi.org/10.1016/j.ijmultiphaseflow.2014.07.004

    Article  Google Scholar 

  7. Krieger W, Lamsfuß J, Zhang W, Kockmann N (2017) Local mass transfer phenomena and chemical selectivity of gas-liquid reactions in capillaries. Chem Eng Technol 40:2134–2143. https://doi.org/10.1002/ceat.201700420

    Article  Google Scholar 

  8. Krieger W, Bayraktar E, Mierka O, Kaiser L, Dinter R, Hennekes J, Turek S, Kockmann N (2020) Arduino-based slider setup for gas–liquid mass transfer investigations: experiments and CFD simulations. AIChE J 66:e16953. https://doi.org/10.1002/aic.16953

  9. Mizutani Y, Tomiyama A, Hosokawa S, Sou A, Kudo Y, Mishima K (2007) Two-phase flow patterns in a four by four rod bundle. J Nucl Sci Technol 44:894–901. https://doi.org/10.1080/18811248.2007.9711327

    Article  Google Scholar 

  10. Timmermann J (2018) Experimental analysis of fast reactions in gas-liquid flows. Ph.D. thesis, TU Hamburg, Cuvillier Verlag Göttingen

    Google Scholar 

  11. Strassl F, Timmermann J, Schlüter M, Herres-Pawlis S (2016) Kinetik der Sauerstoffaktivierung. GIT Labor Fachz 9:39–41

    Google Scholar 

  12. Schurr D, Strassl F, Liebhäuser P, Rinke G, Dittmeyer R, Herres-Pawlis S (2016) Decay kinetics of sensitive bioinorganic species in a SuperFocus mixer at ambient conditions. React Chem Eng 1:485–493. https://doi.org/10.1039/C6RE00119J

    Article  Google Scholar 

  13. Kexel F, von Kameke A, Oßberger M, Hoffmann M, Klüfers P, Schlüter M (2021) Bildgebende UV-VIS Spektroskopie zur Untersuchung des Einflusses der Fluiddynamik auf die Selektivität und Ausbeute von schnellen konkurrierenden konsekutiven gas-flüssig Reaktionen. Chem Ing Tech 93(1–2):1–10

    Google Scholar 

  14. Khinast JG, Koynov AA, Leib TM (2003) Reactive mass transfer at gas–liquid interfaces: impact of micro-scale fluid dynamics on yield and selectivity of liquid-phase cyclohexane oxidation. Chem Eng Sci 58:3961–3971. https://doi.org/10.1016/S0009-2509(03)00311-7

    Article  Google Scholar 

  15. Sousa MM, Miguel C, Rodrigues I, Parola AJ, Pina F, Seixas de Melo JS, Melo MJ (2008) A photochemical study on the blue dye indigo: from solution to ancient Andean textiles. Photochem Photobiol Sci 7:1353. https://doi.org/10.1039/b809578g

  16. Dittmar I, Ehrhard P (2013) Numerische Untersuchung einer Flüssig/flüssig-Pfropfenströmung in einem Mikrokapillarreaktor. Chem Ing Tech 85(10):1612–1618. https://doi.org/10.1002/cite.201200141

  17. Krieger W, Hörbelt M, Schuster S, Hennekes J, Kockmann N (2019) Kinetic study of Leuco-Indigo carmine oxidation and investigation of Taylor and Dean flow superposition in a coiled flow inverter. Chem Eng Technol 42:2052–2060. https://doi.org/10.1002/ceat.201800753

    Article  Google Scholar 

  18. Wang K, Luo G (2017) Microflow extraction: a review of recent development. Chem Eng Sci 169:18–33. https://doi.org/10.1016/j.ces.2016.10.025

    Article  Google Scholar 

  19. Adelsberger J, Esser P, Griebel M, Groß S, Klitz M, Rüttgers A (2014) 3D incompressible two-phase flow benchmark computations for rising droplets, Proceedings of the 11th World Congress on Computational Mechanics (WCCM XI), Barcelona

    Google Scholar 

  20. Marschall H, Boden S, Lehrenfeld C, Falconi DCJ, Hampel U, Reusken A, Wörner M, Bothe D (2014) Validation of interface capturing and tracking techniques with different surface tension treatments against a Taylor bubble benchmark problem. Comput Fluids 102:336–352. https://doi.org/10.1016/j.compfluid.2014.06.030

  21. Turek S, Mierka O, Bäumler K (2019) Numerical benchmarking for 3D multiphase flow: new results for a rising bubble. In: Numerical Mathematics and Advanced Applications ENUMATH 2017. Lecture notes in computational science and engineering, vol 126. Springer. https://doi.org/10.1007/978-3-319-96415-7_54

  22. FeatFlow Homepage, www.featflow.de, version from July 2020

  23. Hysing S (2007) Numerical simulation of immiscible fluids with FEM level set techniques. Ph.D. thesis, University of Dortmund, Dortmund

    Google Scholar 

  24. Kuzmin D, Turek S (2004) High-resolution FEM-TVD schemes based on a fully multidimensional flux limiter. J Comput Phys 198:131–158. https://doi.org/10.1016/j.jcp.2004.01.015

    Article  MathSciNet  MATH  Google Scholar 

  25. Shampine LF, Gordon MK (1975) Computer solution of ordinary differential equation. In: The initial value problem, Freeman, San Francisco

    Google Scholar 

  26. Dortmund Data Bank (2020) http://unifac.ddbst.de/en/EED/PCP/VIS_C3.php

Download references

Acknowledgements

This work was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)—priority program SPP1740 “Reactive Bubbly Flows” (237189010) for the projects SCHL 617/13-1/2 (256614085), HE 5480/10-1/2 (256729061), KL 624/18-1/2 (256760414), TU 102/53-1/2 (256652799), KO 2349/13-1 (401436608).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Schlüter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Schlüter, M. et al. (2021). Visualization and Quantitative Analysis of Consecutive Reactions in Taylor Bubble Flows. In: Schlüter, M., Bothe, D., Herres-Pawlis, S., Nieken, U. (eds) Reactive Bubbly Flows. Fluid Mechanics and Its Applications, vol 128. Springer, Cham. https://doi.org/10.1007/978-3-030-72361-3_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-72361-3_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-72360-6

  • Online ISBN: 978-3-030-72361-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics