Skip to main content

Experimental Investigation of Reactive Bubbly Flows—Influence of Boundary Layer Dynamics on Mass Transfer and Chemical Reactions

  • Chapter
  • First Online:
Reactive Bubbly Flows

Part of the book series: Fluid Mechanics and Its Applications ((FMIA,volume 128))

Abstract

Bubbly flows are extensively used processes in the chemical industry. Since the complex interaction of fluid dynamics, mass transfer and chemical reaction is not yet fully understood, a reliable prediction of yield and selectivity is not possible. Within this work different benchmark experiments are developed, allowing the investigation of the interplay of mixing and chemical reactions. For precise predictions of the chemical process, a detailed knowledge about the intrinsic kinetics is essential. Therefore, the guiding measure “SuperFocus Mixer” (SFM) has been developed and successfully tested by determining the kinetics of a model system and of the oxidation of a temperature sensitive copper complex. In a second step, the identified reaction is transferred into the Taylor bubble setup, marking the second benchmark system. Here the effect of mixing on the production of the products in consecutive and competitive-consecutive reaction is investigated. The conducted experiments show significant influence of the mixing intensity on the production of the first reaction product MNIC and the side product DNIC, favoring the first product at intensified mixing. Finally, the local mass transfer at freely ascending bubbles superimposed by a chemical reaction is determined by applying planar-LIF, and the influence of bubble–bubble bouncing is quantified. In addition, a novel method, the Time Resolved Scanning-LaserInduced Fluorescence (TRS-LIF) for the visualization of 3D concentration fields, is introduced and tested at single rising oxygen bubbles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The video sequences are available in the supporting information of [55].

References

  1. Clift R, Grace JR, Weber ME (1978) Bubbles, drops, and particles. Academic Press, New York

    Google Scholar 

  2. Fan L-S, Tsuchiya K (1990) Bubble wake dynamics in liquids and liquid-solid suspensions. Butterworth-Heinemann, Boston

    Google Scholar 

  3. Peebles F, Garber HJ (1953) Studies on the motion of gas bubbles in liquids. Chem Eng Progr 88–97

    Google Scholar 

  4. Lewis WK, Whitman WG (1924) Principles of gas absorption. Ind Eng Chem 16:1215–1220. https://doi.org/10.1021/ie50180a002

    Article  Google Scholar 

  5. Higbie R (1935) The rate of absorption of a pure gas into a still liquid during short periods of exposure. New York

    Google Scholar 

  6. Tsuchiya K, Saito T, Kajishima T, Kosugi S (2001) Coupling between mass transfer from dissolving bubbles and formation of bubble-surface wave. Chem Eng Sci 56:6411–6417. https://doi.org/10.1016/S0009-2509(01)00278-0

    Article  Google Scholar 

  7. Redfield JA, Houghton G (1965) Mass transfer and drag coefficients for single bubbles at Reynolds numbers of 0·02–5000. Chem Eng Sci 20:131–139. https://doi.org/10.1016/0009-2509(65)85006-0

    Article  Google Scholar 

  8. Toor HL, Marchello JM (1958) Film-penetration model for mass and heat transfer. AIChE J 4:97–101. https://doi.org/10.1002/aic.690040118

    Article  Google Scholar 

  9. Levenspiel O (1972) Chemical reaction engineering. Wiley, New York

    Google Scholar 

  10. Levenspiel O (1999) Chemical reaction engineering. Wiley, New York

    Google Scholar 

  11. Baerns M, Hofmann H, Renken A (1992) Chemische Reaktionstechnik—Lehrbuch der Technischen Chemie, Bd. 1. Georg‐Thieme‐Verlag, Stuttgart. ISBN 3‐1368‐7502‐8

    Google Scholar 

  12. Hatta S (1932) On the absorption velocity of gases by liquids. Tohoku Imperial University

    Google Scholar 

  13. Hikita H (1964) Gas absorption with (m, n)-th order irreversible chemical reaction. Ind Eng Chem 332–340

    Google Scholar 

  14. Hessel V, Hardt S, Löwe H, Schönfeld F (2003) Laminar mixing in different interdigital micromixers: I. Experimental characterization. AIChE J 49:566–577. https://doi.org/10.1002/aic.690490304

    Article  Google Scholar 

  15. Hardt S, Schönfeld F (2003) Laminar mixing in different interdigital micromixers: II. Numerical simulations. AIChE J 49:578–584. https://doi.org/10.1002/aic.690490305

    Article  Google Scholar 

  16. Drese KS (2004) Optimization of interdigital micromixers via analytical modeling—exemplified with the SuperFocus mixer. Chem Eng J 101:403–407. https://doi.org/10.1016/j.cej.2003.10.023

    Article  Google Scholar 

  17. Kashid MN, Renken A, Kiwi-Minsker L (2015) Microstructured devices for chemical processing. Wiley-VCH, Weinheim

    Google Scholar 

  18. Kück UD, Kröger M, Bothe D, Räbiger N, Schlüter M, Warnecke H-J (2011) Skalenübergreifende Beschreibung der Transportprozesse bei Gas/Flüssig-Reaktionen. Chem Ing Tech 83:1084–1095. https://doi.org/10.1002/cite.201100036

    Article  Google Scholar 

  19. Bäckström HLJ (1934) Der Kettenmechanismus bei der Autoxydation von Aldehyden. Z Phys Chem 25B. https://doi.org/10.1515/zpch-1934-2509

  20. Rüttinger S, Spille C, Hoffmann M, Schlüter M (2018) Laser-induced fluorescence in multiphase systems. ChemBioEng Rev 5:253–269. https://doi.org/10.1002/cben.201800005

    Article  Google Scholar 

  21. Karasso PS, Mungal MG (1997) PLIF measurements in aqueous flows using the Nd:YAG laser. Exp Fluids 23:382–387. https://doi.org/10.1007/s003480050125

    Article  Google Scholar 

  22. Francois J, Dietrich N, Guiraud P, Cockx A (2011) Direct measurement of mass transfer around a single bubble by micro-PLIFI. Chem Eng Sci 66:3328–3338. https://doi.org/10.1016/j.ces.2011.01.049

    Article  Google Scholar 

  23. Timmermann J (2018) Experimental analysis of fast reactions in gas-liquid flows

    Google Scholar 

  24. Hoffmann M, Schlüter M, Räbiger N (2006) Experimental investigation of liquid–liquid mixing in T-shaped micro-mixers using μ-LIF and μ-PIV. Chem Eng Sci 61:2968–2976. https://doi.org/10.1016/j.ces.2005.11.029

    Article  Google Scholar 

  25. Spille VC (2015) Experimentelle Analyse lokaler Konzentrationsfelder in einem Superfokusmischer zur Bestimmung von Mikrokinetiken. Masterthesis, Hamburg University of Techchnology

    Google Scholar 

  26. Mierka O, Munir M, Spille C, Timmermann J, Schlüter M, Turek S (2017) Reactive liquid-flow simulation of micromixers based on grid deformation techniques. Chem Eng Technol 40:1408–1417. https://doi.org/10.1002/ceat.201600686

    Article  Google Scholar 

  27. Spille C (2016) Characterization of reactive systems by means of a SuperFocus mixer

    Google Scholar 

  28. Schurr D, Strassl F, Liebhäuser P, Rinke G, Dittmeyer R, Herres-Pawlis S (2016) Decay kinetics of sensitive bioinorganic species in a SuperFocus mixer at ambient conditions. React Chem Eng 1:485–493. https://doi.org/10.1039/C6RE00119J

    Article  Google Scholar 

  29. Hayashi K, Kurimoto R, Tomiyama A (2011) Terminal velocity of a Taylor drop in a vertical pipe. Int J Multiph Flow 37:241–251. https://doi.org/10.1016/j.ijmultiphaseflow.2010.10.008

    Article  Google Scholar 

  30. Kastens S, Timmermann J, Strassl F, Rampmaier RF, Hoffmann A, Herres-Pawlis S, Schlüter M (2017) Test system for the investigation of reactive Taylor bubbles. Chem Eng Technol 40:1494–1501. https://doi.org/10.1002/ceat.201700047

    Article  Google Scholar 

  31. Kameke AV, Kastens S, Rüttinger S, Herres-Pawlis S, Schlüter M (2019) How coherent structures dominate the residence time in a bubble wake: an experimental example. Chem Eng Sci 207:317–326. https://doi.org/10.1016/j.ces.2019.06.033

  32. Llamas CG, Spille C, Kastens S, Paz DG, Schlüter M, Kameke A (2020) Potential of Lagrangian analysis methods in the study of chemical reactors. Chem Ing Tech 92:540–553. https://doi.org/10.1002/cite.201900147

    Article  Google Scholar 

  33. Bothe D, Reusken A (eds) (2017) Transport processes at fluidic interfaces. Springer International Publishing, Cham. https://doi.org/10.1007/978-3-319-56602-3

  34. Rolff M, Schottenheim J, Decker H, Tuczek F (2011) Copper–O2 reactivity of tyrosinase models towards external monophenolic substrates: molecular mechanism and comparison with the enzyme. Chem Soc Rev 40:4077. https://doi.org/10.1039/c0cs00202j

    Article  Google Scholar 

  35. Orhan R, Dursun G (2016) Effects of surfactants on hydrodynamics and mass transfer in a co-current downflow contacting column. Chem Eng Res Des 109:477–485. https://doi.org/10.1016/j.cherd.2016.02.030

    Article  Google Scholar 

  36. Painmanakul P, Loubière K, Hébrard G, Mietton-Peuchot M, Roustan M (2005) Effect of surfactants on liquid-side mass transfer coefficients. Chem Eng Sci 60:6480–6491. https://doi.org/10.1016/j.ces.2005.04.053

    Article  Google Scholar 

  37. Álvarez E, Sanjurjo B, Cancela A, Navaza JM (2000) Mass transfer and influence of physical properties of solutions in a bubble column. Chem Eng Res Des 78:889–893. https://doi.org/10.1205/026387600527950

    Article  Google Scholar 

  38. Kexel F, von Kameke A, Oßberger M, Hoffmann M, Klüfers P, Schlüter M (2020) Bildgebende UV-VIS Spektroskopie zur Untersuchung des Einflusses der Fluiddynamik auf die Selektivität und Ausbeute von schnellen konkurrierenden konsekutiven gas-flüssig Reaktionen. Chem Ing Tech

    Google Scholar 

  39. Haller G (2015) Lagrangian coherent structures. Annu Rev Fluid Mech 47:137–162. https://doi.org/10.1146/annurev-fluid-010313-141322

    Article  MathSciNet  Google Scholar 

  40. Farazmand M, Haller G (2012) Computing Lagrangian coherent structures from their variational theory. Chaos 22:013128. https://doi.org/10.1063/1.3690153

    Article  MathSciNet  MATH  Google Scholar 

  41. Onu K, Huhn F, Haller G (2015) LCS tool: a computational platform for Lagrangian coherent structures. J Comput Sci 7:26–36. https://doi.org/10.1016/j.jocs.2014.12.002

    Article  Google Scholar 

  42. Kastens S (2020) Transport processes at Taylor bubbles in vertical channels

    Google Scholar 

  43. Bork O, Schlueter M, Raebiger N (2005) The impact of local phenomena on mass transfer in gas-liquid systems. Can J Chem Eng 83:658–666. https://doi.org/10.1002/cjce.5450830406

    Article  Google Scholar 

  44. Glaeser H (1977) Berechnung des Impuls- und STofftransports durch die Grenzfläche einer formveränderlichen Blase. Berlin

    Google Scholar 

  45. Kück UD, Schlüter M, Raebiger N (2012) Local measurement of mass transfer rate of a single bubble with and without a chemical reaction. J Chem Eng Japan/JCEJ 45:708–712. https://doi.org/10.1252/jcej.12we059

    Article  Google Scholar 

  46. Jimenez M, Dietrich N, Hébrard G (2013) Mass transfer in the wake of non-spherical air bubbles quantified by quenching of fluorescence. Chem Eng Sci 100:160–171. https://doi.org/10.1016/j.ces.2013.01.036

    Article  Google Scholar 

  47. Huang J, Saito T (2017) Discussion about the differences in mass transfer, bubble motion and surrounding liquid motion between a contaminated system and a clean system based on consideration of three-dimensional wake structure obtained from LIF visualization. Chem Eng Sci 170:105–115. https://doi.org/10.1016/j.ces.2017.03.030

    Article  Google Scholar 

  48. Brücker C (1999) Structure and dynamics of the wake of bubbles and its relevance for bubble interaction. Phys Fluids 11:1781–1796. https://doi.org/10.1063/1.870043

    Article  MathSciNet  MATH  Google Scholar 

  49. Deusch S, Dracos T (2001) Time resolved 3D passive scalar concentration-field imaging by laser induced fluorescence (LIF) in moving liquids. Meas Sci Technol 12:188–200. https://doi.org/10.1088/0957-0233/12/2/310

    Article  Google Scholar 

  50. Crimaldi JP (2008) Planar laser induced fluorescence in aqueous flows. Exp Fluids 44:851–863. https://doi.org/10.1007/s00348-008-0496-2

    Article  Google Scholar 

  51. Stöhr M, Schanze J, Khalili A (2009) Visualization of gas–liquid mass transfer and wake structure of rising bubbles using pH-sensitive PLIF. Exp Fluids 47:135–143. https://doi.org/10.1007/s00348-009-0633-6

    Article  Google Scholar 

  52. Soodt T, Schröder F, Klaas M, van Overbrüggen T, Schröder W (2012) Experimental investigation of the transitional bronchial velocity distribution using stereo scanning PIV. Exp Fluids 52:709–718. https://doi.org/10.1007/s00348-011-1103-5

    Article  Google Scholar 

  53. von Kameke A, Kexel F, Rüttinger S, Colombi R, Kastens S, Schlüter M (2019) 3D-reconstruction of O2 bubble wake concentration. In: Proceedings of the 13th international symposium on particle image velocimetry, Munich

    Google Scholar 

  54. Sone D, Sakakibara K, Yamada M, Sanada T, Saito T (2008) Bubble motion and its surrounding liquid motion through the collision of a pair of bubbles. JPES 2:306–317. https://doi.org/10.1299/jpes.2.306

    Article  Google Scholar 

  55. Ohl CD (2001) Generator for single bubbles of controllable size. Rev Sci Instrum 72:252–254. https://doi.org/10.1063/1.1329900

  56. Timmermann J, Hoffmann M, Schlüter M (2016) Influence of bubble bouncing on mass transfer and chemical reaction. Chem Eng Technol 39:1955–1962. https://doi.org/10.1002/ceat.201600299

    Article  Google Scholar 

  57. Kück UD, Schlüter M, Räbiger N (2009) Analyse des grenzschichtnahen Stofftransports an frei aufsteigenden Gasblasen. Chem Ing Tech 81:1599–1606. https://doi.org/10.1002/cite.200900034

    Article  Google Scholar 

  58. Weiner A, Timmermann J, Pesci C, Grewe J, Hoffmann M, Schlüter M, Bothe D (2019) Experimental and numerical investigation of reactive species transport around a small rising bubble. Chem Eng Sci X 1:100007. https://doi.org/10.1016/j.cesx.2019.100007

    Article  Google Scholar 

  59. Dani A, Guiraud P, Cockx A (2007) Local measurement of oxygen transfer around a single bubble by planar laser-induced fluorescence. Chem Eng Sci 62:7245–7252. https://doi.org/10.1016/j.ces.2007.08.047

  60. Wasowski T, Blaß E (1987) Wake-Phänomene hinter festen und fluiden Partikeln: Wake-Phänomene hinter festen und fluiden Partikeln. Chem Ing Tech 59:544–555. https://doi.org/10.1002/cite.330590704

    Article  Google Scholar 

  61. Tomiyama A, Kataoka I, Zun I, Sakaguchi T (1998) Drag coefficients of single bubbles under normal and micro gravity conditions. JSME Int J Ser B, 41(2):472–479

    Google Scholar 

  62. Frössling N (1938) The evaporation of falling drops (in German). Gerlands Beitr Geophys 52:170–216

    Google Scholar 

Download references

Acknowledgements

This work was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)—priority program SPP1740 “Reactive Bubbly Flows” (237189010) for the project SCHL 617/13-2 (256614085).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Schlüter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kexel, F., Kastens, S., Timmermann, J., von Kameke, A., Schlüter, M. (2021). Experimental Investigation of Reactive Bubbly Flows—Influence of Boundary Layer Dynamics on Mass Transfer and Chemical Reactions. In: Schlüter, M., Bothe, D., Herres-Pawlis, S., Nieken, U. (eds) Reactive Bubbly Flows. Fluid Mechanics and Its Applications, vol 128. Springer, Cham. https://doi.org/10.1007/978-3-030-72361-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-72361-3_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-72360-6

  • Online ISBN: 978-3-030-72361-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics