Skip to main content

Mass Transfer Around Gas Bubbles in Reacting Liquids

  • Chapter
  • First Online:
Reactive Bubbly Flows

Part of the book series: Fluid Mechanics and Its Applications ((FMIA,volume 128))

Abstract

Within this project, the mass transfer of single bubbles in an unconfined environment was investigated. Most published works with longer rising paths lack the three-dimensional resolution of the bubble interface while smaller systems lack the long-term effects appearing during the ascent. Here, two cameras were moved in real-time with the bubble allowing a three-dimensional resolution of the bubble for a long rising path. For validation purposes of the bubble dynamics, the ascent of inert bubbles was investigated in clean systems and, due to the chemical systems of interest within this project, in systems with surface active components (metal-based complexes and different ligands). Furthermore, for comparison with widely used Sherwood correlations, purely physical mass transfer of different gas types was investigated in the same systems confirming a significant time-depending influence of the surfactants not only on the bubble dynamics but on the mass transfer, as well. For chemical reaction enhanced mass transfer, CO2 in NaOHaq and NO in a nitrosyl-iron complex system with different ligands were investigated. The dependency of the Sherwood number on the Péclet number was confirmed and concentration dependent enhancement factors were determined. The results show a complex interaction of ligand-depending contamination kinetics. Bubble dynamics and reaction rates and the mass transfer can increase or decrease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Clift R, Grace JR, Weber ME (1992) Bubbles, drops, and particles, 3, print edn. Acad. Press, New York

    Google Scholar 

  2. Tomiyama A, Katakoa I, Zun I, Sakaguchi T (1998) Drag coefficients of single bubbles under normal and micro gravity conditions. JSME Int J Ser B Fluids Therm Eng 41(2):472–479. https://doi.org/10.1299/jsmeb.41.245

    Article  Google Scholar 

  3. Park SH, Park C, Lee JY, Lee B (2017) A simple parameterization for the rising velocity of bubbles in a liquid pool. Nucl Eng Technol 49(4):692–699. https://doi.org/10.1016/j.net.2016.12.006

    Article  Google Scholar 

  4. Fan L-S, Tsuchiya K (1990) Bubble wake dynamics in liquids and liquid–solid suspensions. Butterworth-Heinemann. https://doi.org/10.1016/C2009-0-24002-5

  5. Legendre D, Zenit R, Velez-Cordero JR (2012) On the deformation of gas bubbles in liquids. Phys Fluids 24:043303. https://doi.org/10.1063/1.4705527

    Article  Google Scholar 

  6. Myint W, Hosokawa S, Tomiyama A (2007) Shapes of single drops rising through stagnant liquids. J Fluid Sci Technol 2(1):184–195. https://doi.org/10.1299/jfst.2.184

    Article  Google Scholar 

  7. Okawa T, Tanaka T, Kataoka I, Mori M (2003) Temperature effect on single bubble rise characteristics in stagnant distilled water. Int J Heat Mass Transfer 46:903–913. https://doi.org/10.1016/S0017-9310(02)00345-9

    Article  Google Scholar 

  8. Sanada T, Sugihara K, Shirota M, Watanabe M (2008) Motion and drag of a single bubble in super-purified water. Fluid Dyn Res 40:534–545

    Article  Google Scholar 

  9. Aoyama S, Hayashi K, Hosokawa S, Tomiyama A (2016) Shapes of ellipsoidal bubbles in infinite stagnant liquids. Int J Multiph Flow 79:23–30. https://doi.org/10.1016/j.ijmultiphaseflow.2015.10.003

    Article  MathSciNet  Google Scholar 

  10. Aoyama S, Hayashi K, Hosokawa S, Tomiyama A (2018) Shapes of single bubbles in infinite stagnant liquids contaminated with surfactant. Exp Therm Fluid Sci 96:460–469. https://doi.org/10.1016/j.expthermflusci.2018.03.015

    Article  Google Scholar 

  11. Deising D, Bothe D, Marschall H (2018) Direct numerical simulation of mass transfer in bubbly flows. Comput Fluids 172(30):524–537. https://doi.org/10.1016/j.compfluid.2018.03.041

    Article  MathSciNet  MATH  Google Scholar 

  12. Hughmark GA (1967) Holdup and mass transfer in bubble columns. Ind Eng Chem Process Des Dev 6(2):218–220

    Article  Google Scholar 

  13. Calderbank PH, Moo-Young MB (1961) The continuous phase heat and mass transfer properties of dispersions. Chem Eng Sci 16:39–54. https://doi.org/10.1016/0009-2509(61)87005-X

    Article  Google Scholar 

  14. Johnson AI, Besik F, Hamielec AE (1969) Mass transfer from a single rising bubble. Can J Chem Eng 47:559–564. https://doi.org/10.1002/cjce.5450470615

    Article  Google Scholar 

  15. Sherwood TK, Pigford RL, Wilke CR (1975) Mass transfer. McGraw-Hill

    Google Scholar 

  16. Lochiel AC, Calderbank PH (1964) Mass transfer in the continuous phase around axisymmetric bodies of revolution. Chem Eng Sci 19(7):471–484. https://doi.org/10.1016/0009-2509(64)85074-0

    Article  Google Scholar 

  17. Brauer H (1979) Particle/fluid transport processes. Fortschr Verfahrenstech 17. VDI-Verlag, Düsseldorf

    Google Scholar 

  18. Takemura F, Yabe A (1998) Gas dissolution process of spherical rising gas bubbles. Chem Eng Sci 53(15):2691–2699. https://doi.org/10.1016/S0009-2509(98)00094-3

  19. McCabe WL, Smith JC, Harriott P (2005) Unit operations of chemical engineering, 7th edn. McGraw-Hill

    Google Scholar 

  20. Ohl CD (2001) Generator for single bubbles of controllable size. Rev Sci Instrum 72(1):252–254. https://doi.org/10.1063/1.1329900

    Article  Google Scholar 

  21. Schneppensieper T, Wanat A, Stochel G, Goldstein S, Meyerstein D, van Eldik R (2001) Ligand effects on the kinetics of the reversible binding of NO to selected aminocarboxylato complexes of Iron(II) in aqueous solution. Eur J Inorg Chem 2001:2317–2325. https://doi.org/10.1002/1099-0682(200109)2001:9%3c2317::AID-EJIC2317%3e3.0.CO;2-F

    Article  Google Scholar 

  22. Schneppensieper T, Finkler S, Czap A, van Eldik R, Heus M, Nieuwenhuizen P, Wreesmann C, Abma W (2001) Tuning the reversible binding of NO to Iron(II) aminocarboxylate and related complexes in aqueous solution. Eur J Inorg Chem 2001:491–501. https://doi.org/10.1002/1099-0682(200102)2001:2%3c491::AID-EJIC491%3e3.0.CO;2-2

    Article  Google Scholar 

  23. Schneppensieper T, Wanat A, Stochel G, van Eldik R (2002) Mechanistic information on the reversible binding of NO to selected Iron(II) chelates from activation parameters. Inorg Chem 41(9):2565–2573. https://doi.org/10.1021/ic011220w

    Article  Google Scholar 

  24. Einstein A (1905) Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Ann Phys 17:549–560

    Article  Google Scholar 

  25. Bridgeman OC, Aldrich EW (1964) Vapor pressure tables for water. J Heat Transfer 86(2):279–286. https://doi.org/10.1115/1.3687121

    Article  Google Scholar 

  26. Ambrose D, Sprake CHS (1970) Thermodynamic properties of organic oxygen compounds XXV. Vapour pressures and normal boiling temperatures of aliphatic alcohols. J Chem Thermodyn 2(5):631–645. https://doi.org/10.1016/0021-9614(70)90038-8

  27. Sander R (2015) Compilation of Henry’s law constants (version 4.0) for water as solvent. Atmos Chem Phys 15:4399–4981. https://doi.org/10.5194/acp-15-4399-2015

  28. Cussler EL (1997) Diffusion: mass transfer in fluid systems, 2nd edn. Cambridge University Press, New York

    Google Scholar 

  29. Warneck P, Williams J (2012) The atmospheric chemist’s companion: numerical data for use in the atmospheric sciences. Springer

    Google Scholar 

  30. Fernández-Prini R, Alvarez JL, Harvey AH (2003) Henry’s constants and vapor-liquid distribution constants for gaseous solutes in H2O and D2O at high temperatures. J Phys Chem Ref Data 32:903–916. https://doi.org/10.1063/1.1564818

    Article  Google Scholar 

  31. Young CL, Battino R, Clever HL, Young CL (eds) (1981) Solubility data series, vol 8. Pergamon Press, New York. https://doi.org/10.1002/bbpc.19820861029

  32. Wilke CR, Chang P (1955) Correlation of diffusion coefficients in dilute solutions. AIChE J 1:264–270

    Article  Google Scholar 

  33. Malviya A, Vrabec J (2020) Henry’s law constant of nitrogen, oxygen and argon in ternary aqueous alcoholic solvent mixtures. J Chem Eng Data 65:1189–1196. https://doi.org/10.1021/acs.jced.9b00571

    Article  Google Scholar 

  34. Sada E, Kito S, Oda T, Ito Y (1975) Diffusivities of gases in binary mixtures of alcohols and water. Chem Eng J 10:155–159. https://doi.org/10.1016/0300-9467(75)88030-0

    Article  Google Scholar 

  35. Fleischer C, Becker S, Eigenberger G (1996) Detailed modeling of the chemisorption of CO2 into NaOH in a bubble column. Chem Eng Sci 51(10):1715–1724. https://doi.org/10.1016/0009-2509(96)00030-9

    Article  Google Scholar 

  36. Sardeing R, Painmanakul P, Hébrard G (2006) Effect of surfactants on liquid-side mass transfer coefficients in gas–liquid systems: a first step to modeling. Chem Eng Sci 61(19):6249–6260. https://doi.org/10.1016/j.ces.2006.05.051

    Article  Google Scholar 

  37. Hori Y, Bothe D, Hayashi K, Hosokawa S, Tomiyama A (2020) Mass transfer from single carbon-dioxide bubbles in surfactant-electrolyte mixed aqueous solutions in vertical pipes. Int J Multiph Flow 124. https://doi.org/10.1016/j.ijmultiphaseflow.2020.103207

  38. Painmanakul P, Loubière K, Hébrard G, Mietton-Peuchot M, Roustan M (2005) Effect of surfactants on liquid-side mass transfer coefficients. Chem Eng Sci 60:6480–6491. https://doi.org/10.1016/j.ces.2005.04.053

    Article  Google Scholar 

  39. Vasconcelos JMT, Orvalho SP, Alves SS (2002) Gas-liquid mass transfer to single bubbles: effect of surface contamination. AIChE J 48(6):1145–1154. https://doi.org/10.1002/aic.690480603

    Article  Google Scholar 

  40. Merker D, Böhm L, Oßberger M, Klüfers P, Kraume M (2017) Mass transfer in reactive bubbly flows—a single bubble study. Chem Eng Technol 40:1391–1399. https://doi.org/10.1002/ceat.201600715

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)—priority program SPP1740 “Reactive Bubbly Flows” (237189010) for the project KR 1639/22-2 (256647858).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Kraume .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Merker, D., Böhm, L., Kraume, M. (2021). Mass Transfer Around Gas Bubbles in Reacting Liquids. In: Schlüter, M., Bothe, D., Herres-Pawlis, S., Nieken, U. (eds) Reactive Bubbly Flows. Fluid Mechanics and Its Applications, vol 128. Springer, Cham. https://doi.org/10.1007/978-3-030-72361-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-72361-3_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-72360-6

  • Online ISBN: 978-3-030-72361-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics