Skip to main content

Experimental Animal Models in Cranial Suture Biology: Molecular and Pharmacological Treatment Strategies

  • Chapter
  • First Online:
The Sutures of the Skull
  • 1227 Accesses

Abstract

The craniofacial skeleton develops both spatially and temporally, whereby cranial sutures are involved in regulating growth and morphogenesis. Disrupting these molecular and cellular interactions can result in craniosynostosis, the premature fusion of cranial sutures, which restricts the growth of the skull and causes malformations perpendicular to the sutures affected. Facial deformities and functional CNS irregularities can also occur. Expansion of the cranial vault and reconstructive surgery are still the main course of treatment, however they present an increased morbidity risk to the infant. Whilst the etiology of non-syndromic craniosynostosis has still not been decoded, the gain-of-function mutations in FGFR1-3 and TWIST1 are responsible for over three quarters of the most common craniofacial syndromes. Animal models have been extremely valuable in dissecting the role of genes in the cranial sutures and for developing other non-surgical treatments. In this review we present several pharmacological and molecule methods for treating craniosynostosis in animal models, which have been tested by using in vitro and in vivo assays; we then present a discussion of their possible use in humans with a focus on tyrosine kinase inhibitors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Lajeunie E, Le Merrer M, Bonaïti-Pellie C, Marchac D, Renier D. Genetic study of nonsyndromic coronal craniosynostosis. Am J Med Genet. 1995;55(4):500–4.

    Article  CAS  PubMed  Google Scholar 

  2. Cornelissen M, Ottelander BD, Rizopoulos D, van der Hulst R, van der Molen AM, van der Horst C, Delye H, van Veelen ML, Bonsel G, Mathijssen I. Increase of prevalence of craniosynostosis. J Craniomaxillofac Surg. 2016;44(9):1273–9.

    Article  PubMed  Google Scholar 

  3. Rachwalski M, Khonsari RH, Paternoster G. current approaches in the development of molecular and pharmacological therapies in craniosynostosis utilizing animal models. Mol Syndromol. 2019;10(1–2):115–23.

    Article  CAS  PubMed  Google Scholar 

  4. Wilkie AO. Bad bones, absent smell, selfish testes: the pleiotropic consequences of human FGF receptor mutations. Cytokine Growth Factor Rev. 2005;(2):187–203.

    Google Scholar 

  5. Passos-Bueno MR, Serti Eacute AE, Jehee FS, Fanganiello R, Yeh E. Genetics of craniosynostosis: genes, syndromes, mutations and genotype-phenotype correlations. Front Oral Biol. 2008;12:107–43.

    Article  PubMed  Google Scholar 

  6. McCarthy JG, Warren SM, Bernstein J, Burnett W, Cunningham ML, Edmond JC, Figueroa AA, Kapp-Simon KA, Labow BI, Peterson-Falzone SJ, Proctor MR, Rubin MS, Sze RW, Yemen TA; Craniosynostosis Working Group Parameters of care for craniosynostosis Cleft Palate Craniofac J. 2012;49 (Suppl 1S–24S).

    Google Scholar 

  7. Rachwalski M, Wollnik B, Kress W. Klinik und Genetik syndromaler und nichtsyndromaler Kraniosynostosen. Med Genet. 2013;25(3):373–87.

    CAS  Google Scholar 

  8. Jabs EW, Müller U, Li X, Ma L, Luo W, Haworth IS, Klisak I, Sparkes R, Warman ML, Mulliken JB, et al. A mutation in the homeodomain of the human MSX2 gene in a family affected with autosomal dominant craniosynostosis. Cell. 1993;75(3):443–50.

    Article  CAS  PubMed  Google Scholar 

  9. Muenke M, Schell U, Hehr A, Robin NH, Losken HW, Schinzel A, Pulleyn LJ, Rutland P, Reardon W, Malcolm S, et al. A common mutation in the fibroblast growth factor receptor 1 gene in Pfeiffer syndrome. Nat Genet. 1994;8(3):269–74.

    Article  CAS  PubMed  Google Scholar 

  10. Reardon W, Winter RM, Rutland P, Pulleyn LJ, Jones BM, Malcolm S. Mutations in the fibroblast growth factor receptor 2 gene cause Crouzon syndrome. Nat Genet. 1994;8(1):98–103.

    Article  CAS  PubMed  Google Scholar 

  11. Rutland P, Pulleyn LJ, Reardon W, Baraitser M, Hayward R, Jones B, Malcolm S, Winter RM, Oldridge M, Slaney SF, et al. Identical mutations in the FGFR2 gene cause both Pfeiffer and Crouzon syndrome phenotypes. Nat Genet. 1995;9(2):173–6.

    Article  CAS  PubMed  Google Scholar 

  12. Wilkie AO, Slaney SF, Oldridge M, Poole MD, Ashworth GJ, Hockley AD, Hayward RD, David DJ, Pulleyn LJ, Rutland P, et al. Apert syndrome results from localized mutations of FGFR2 and is allelic with Crouzon syndrome. Nat Genet. 1995;9(2):165–72.

    Article  CAS  PubMed  Google Scholar 

  13. Muenke M, Gripp KW, McDonald-McGinn DM, Gaudenz K, Whitaker LA, Bartlett SP, Markowitz RI, Robin NH, Nwokoro N, Mulvihill JJ, Losken HW, Mulliken JB, Guttmacher AE, Wilroy RS, Clarke LA, Hollway G, Adès LC, Haan EA, Mulley JC, Cohen MM Jr, Bellus GA, Francomano CA, Moloney DM, Wall SA, Wilkie AO, et al. A unique point mutation in the fibroblast growth factor receptor 3 gene (FGFR3) defines a new craniosynostosis syndrome. Am J Hum Genet. 1997;60(3):555–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. el Ghouzzi V, Le Merrer M, Perrin-Schmitt F, Lajeunie E, Benit P, Renier D, Bourgeois P, Bolcato-Bellemin AL, Munnich A, Bonaventure J. Mutations of the TWIST gene in the Saethre-Chotzen syndrome. Nat Genet. 1997;15(1):42–6.

    Article  PubMed  Google Scholar 

  15. Howard TD, Paznekas WA, Green ED, Chiang LC, Ma N, Ortiz de Luna RI, Garcia Delgado C, Gonzalez-Ramos M, Kline AD, Jabs EW. Mutations in TWIST, a basic helix-loop-helix transcription factor, in Saethre-Chotzen syndrome. Nat Genet. 1997 Jan;15(1):36–41.

    Article  PubMed  Google Scholar 

  16. Wilkie AO, Byren JC, Hurst JA, Jayamohan J, Johnson D, Knight SJ, Lester T, Richards PG, Twigg SR, Wall SA. Prevalence and complications of single-gene and chromosomal disorders in craniosynostosis. Pediatrics. 2010;126(2):e391–400.

    Article  PubMed  Google Scholar 

  17. Laue K, Pogoda HM, Daniel PB, van Haeringen A, Alanay Y, von Ameln S, Rachwalski M, Morgan T, Gray MJ, Breuning MH, Sawyer GM, Sutherland-Smith AJ, Nikkels PG, Kubisch C, Bloch W, Wollnik B, Hammerschmidt M, Robertson SP. Craniosynostosis and multiple skeletal anomalies in humans and zebrafish result from a defect in the localized degradation of retinoic acid. Am J Hum Genet. 2011;89(5):595–606.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Keupp K, Li Y, Vargel I, Hoischen A, Richardson R, Neveling K, Alanay Y, Uz E, Elcioğlu N, Rachwalski M, Kamaci S, Tunçbilek G, Akin B, Grötzinger J, Konas E, Mavili E, Müller-Newen G, Collmann H, Roscioli T, Buckley MF, Yigit G, Gilissen C, Kress W, Veltman J, Hammerschmidt M, Akarsu NA, Wollnik B. Mutations in the interleukin receptor IL11RA cause autosomal recessive Crouzon-like craniosynostosis. Mol Genet Genomic Med. 2013;1(4):223–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ehmke N, Graul-Neumann L, Smorag L, Koenig R, Segebrecht L, Magoulas P, Scaglia F, Kilic E, Hennig AF, Adolphs N, Saha N, Fauler B, Kalscheuer VM, Hennig F, Altmüller J, Netzer C, Thiele H, Nürnberg P, Yigit G, Jäger M, Hecht J, Krüger U, Mielke T, Krawitz PM, Horn D, Schuelke M, Mundlos S, Bacino CA, Bonnen PE, Wollnik B, Fischer-Zirnsak B, Kornak U. De novo mutations in SLC25A24 Cause a craniosynostosis syndrome with hypertrichosis, progeroid appearance, and mitochondrial dysfunction. Am J Hum Genet. 2017;101(5):833–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Miller KA, Twigg SR, McGowan SJ, Phipps JM, Fenwick AL, Johnson D, Wall SA, Noons P, Rees KE, Tidey EA, Craft J, Taylor J, Taylor JC, Goos JA, Swagemakers SM, Mathijssen IM, van der Spek PJ, Lord H, Lester T, Abid N, Cilliers D, Hurst JA, Morton JE, Sweeney E, Weber A, Wilson LC, Wilkie AO Diagnostic value of exome and whole genome sequencing in craniosynostosis. J Med Genet. 2017; 54(4):260–8.

    Google Scholar 

  21. Thomas GP, Wilkie AO, Richards PG, Wall SA. FGFR3 P250R mutation increases the risk of reoperation in apparent ‘nonsyndromic’ coronal craniosynostosis. J Craniofac Surg. 2005;16(3):347–52.

    Article  PubMed  Google Scholar 

  22. Woods RH, Ul-Haq E, Wilkie AO, Jayamohan J, Richards PG, Johnson D, Lester T. Wall SA: Reoperation for intracranial hypertension in TWIST1-confirmed Saethre-Chotzen syndrome: a 15-year review. Plast Reconstr Surg. 2009;123(6):1801–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Perlyn CA, Morriss-Kay G, Darvann T, Tenenbaum M, Ornitz DM. A model for the pharmacological treatment of crouzon syndrome. Neurosurgery. 2006;59(1):210–5.

    Article  PubMed  Google Scholar 

  24. Holmes G. The role of vertebrate models in understanding craniosynostosis. Childs Nerv Syst. 2012;1471–81.

    Google Scholar 

  25. Itoh N, Ornitz DM. Evolution of the Fgf and Fgfr gene families. Trends Genet. 2004;20(11):563–9.

    Article  CAS  PubMed  Google Scholar 

  26. Eswarakumar VP, Lax I, Schlessinger J. Cellular signaling by fibroblast growth factor receptors. Cytokine Growth Factor Rev. 2005;16(2):139–49.

    Article  CAS  PubMed  Google Scholar 

  27. Greenwald JA, Mehrara BJ, Spector JA, Warren SM, Fagenholz PJ, Smith LE, Bouletreau PJ, Crisera FE, Ueno H, Longaker MT. In vivo modulation of FGF biological activity alters cranial suture fate. Am J Pathol. 2001;158(2):441–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. McDowell LM, Frazier BA, Studelska DR, Giljum K, Chen J, Liu J, Yu K, Ornitz DM, Zhang L. Inhibition or activation of Apert syndrome FGFR2 (S252W) signaling by specific glycosaminoglycans. J Biol Chem. 2006;281(11):6924–30.

    Article  CAS  PubMed  Google Scholar 

  29. Melville H, Wang Y, Taub PJ, Jabs EW. Genetic basis of potential therapeutic strategies for craniosynostosis. Am J Med Genet A. 2010;152A(12):3007–15.

    Article  PubMed  Google Scholar 

  30. Eswarakumar VP, Ozcan F, Lew ED, Bae JH, Tomé F, Booth CJ, Adams DJ, Lax I, Schlessinger J. Attenuation of signaling pathways stimulated by pathologically activated FGF-receptor 2 mutants prevents craniosynostosis. Proc Natl Acad Sci U S A. 2006;103(49):18603–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Yokota M, Kobayashi Y, Morita J, Suzuki H, Hashimoto Y, Sasaki Y, Akiyoshi K, Moriyama K. Therapeutic effect of nanogel-based delivery of soluble FGFR2 with S252W mutation on craniosynostosis. PLoS One. 2014;9(7):e101693.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Shukla V, Coumoul X, Wang RH, Kim HS, Deng CX. RNA interference and inhibition of MEK-ERK signaling prevent abnormal skeletal phenotypes in a mouse model of craniosynostosis. Nat Genet. 2007;39(9):1145–50.

    Article  CAS  PubMed  Google Scholar 

  33. Helsten T, Schwaederle M, Kurzrock R. Fibroblast growth factor receptor signaling in hereditary and neoplastic disease: biologic and clinical implications. Cancer Metastasis Rev. 2015;34(3):479–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Pollock PM, Gartside MG, Dejeza LC, Powell MA, Mallon MA, Davies H, Mohammadi M, Futreal PA, Stratton MR, Trent JM, Goodfellow PJ. Frequent activating FGFR2 mutations in endometrial carcinomas parallel germline mutations associated with craniosynostosis and skeletal dysplasia syndromes. Oncogene. 2007;26(50):7158–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Andreou A, Lamy A, Layet V, Cailliez D, Gobet F, Pfister C, Menard M, Frebourg T. Early-onset low-grade papillary carcinoma of the bladder associated with Apert syndrome and a germline FGFR2 mutation (Pro253Arg). Am J Med Genet A. 2006;140(20):2245–7.

    Article  PubMed  CAS  Google Scholar 

  36. Rouzier C, Soler C, Hofman P, Brennetot C, Bieth E, Pedeutour F. Ovarian dysgerminoma and Apert syndrome. Pediatr Blood Cancer. 2008;50(3):696–8.

    Article  PubMed  Google Scholar 

  37. McDonell LM, Kernohan KD, Boycott KM, Sawyer SL. Receptor tyrosine kinase mutations in developmental syndromes and cancer: two sides of the same coin. Hum Mol Genet. 2015;24(R1):R60–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Yin L, Du X, Li C, Xu X, Chen Z, Su N, Zhao L, Qi H, Li F, Xue J, Yang J, Jin M, Deng C, Chen L. A Pro253Arg mutation in fibroblast growth factor receptor 2 (Fgfr2) causes skeleton malformation mimicking human Apert syndrome by affecting both chondrogenesis and osteogenesis. Bone. 2008;42(4):631–43.

    Article  CAS  PubMed  Google Scholar 

  39. Wang Y, Zhou X, Oberoi K, Phelps R, Couwenhoven R, Sun M, Rezza A, Holmes G, Percival CJ, Friedenthal J, Krejci P, Richtsmeier JT, Huso DL, Rendl M. Jabs EW:p38 Inhibition ameliorates skin and skull abnormalities in Fgfr2 Beare-Stevenson mice. J Clin Invest. 2012;122(6):2153–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Cohen MM Jr. TGF beta/Smad signaling system and its pathologic correlates. Am J Med Genet A. 2003;116A(1):1–10.

    Article  PubMed  Google Scholar 

  41. de Caestecker M. The transforming growth factor-beta superfamily of receptors. Cytokine Growth Factor Rev. 2004;15(1):1–11.

    Article  PubMed  CAS  Google Scholar 

  42. Rawlins JT, Opperman LA. Tgf-beta regulation of suture morphogenesis and growth. Front Oral Biol. 2008;12:178–96.

    Article  PubMed  Google Scholar 

  43. Roth DA, Gold LI, Han VK, McCarthy JG, Sung JJ, Wisoff JH, Longaker MT. Immunolocalization of transforming growth factor beta 1, beta 2, and beta 3 and insulin-like growth factor I in premature cranial suture fusion. Plast Reconstr Surg. 1997;99(2):300–9.

    Article  CAS  PubMed  Google Scholar 

  44. Opperman LA, Nolen AA, Ogle RC. TGF-beta 1, TGF-beta 2, and TGF-beta 3 exhibit distinct patterns of expression during cranial suture formation and obliteration in vivo and in vitro. J Bone Miner Res. 1997;12(3):301–10.

    Article  CAS  PubMed  Google Scholar 

  45. Opperman LA, Chhabra A, Cho RW, Ogle RC. Cranial suture obliteration is induced by re- moval of transforming growth factor (TGF)- beta 3 activity and prevented by removal of TGF-beta 2 activity from fetal rat calvaria in vitro. J Craniofac Genet Dev Biol. 1999;19:164–73.

    CAS  PubMed  Google Scholar 

  46. Opperman LA, Adab K, Gakunga PT. Transform- ing growth factor-beta 2 and TGFbeta 3 regu- late fetal rat cranial suture morphogenesis by regulating rates of cell proliferation and apop- tosis. Dev Dyn. 2000;219:237–47.

    Article  CAS  PubMed  Google Scholar 

  47. Chong SL, Mitchell R, Moursi AM, Winnard P, Losken HW, Bradley J, Ozerdem OR, Azari K, Acarturk O, Opperman LA, Siegel MI, Mooney MP. Rescue of coronal suture fusion using transforming growth factor-beta 3 (Tgf-beta 3) in rabbits with delayed-onset craniosynostosis. Anat Rec A Discov Mol Cell Evol Biol. 2003;274(2):962–71.

    Article  PubMed  CAS  Google Scholar 

  48. Opperman LA, Moursi AM, Sayne JR, Winter- gerst AM. Transforming growth factor-beta 3 (Tgf-beta3) in a collagen gel delays fusion of the rat posterior interfrontal suture in vivo. Anat Rec. 2002;267:120–30.

    Article  CAS  PubMed  Google Scholar 

  49. Moursi AM, Winnard PL, Fryer D, Mooney MP. Delivery of transforming growth factor-beta2-perturbing antibody in a collagen vehicle inhibits cranial suture fusion in calvarial organ culture. Cleft Palate Craniofac J. 2003;40(3):225–32.

    Article  PubMed  Google Scholar 

  50. Mooney MP, Losken HW, Moursi AM, Bradley J, Azari K, Acarturk TO, Cooper GM, Thompson B, Opperman LA, Siegel MI. Anti-TGF-beta2 antibody therapy inhibits postoperative resynostosis in craniosynostotic rabbits. Plast Reconstr Surg. 2007;119(4):1200–12.

    Article  CAS  PubMed  Google Scholar 

  51. Opperman LA, Fernandez CR, So S, Rawlins JT. Erk1/2 signaling is required for Tgf-beta 2-induced suture closure. Dev Dyn. 2006;235(5):1292–9.

    Article  CAS  PubMed  Google Scholar 

  52. Gosain AK, Machol JA 4th, Gliniak C, Halligan NL. TGF-beta1 RNA interference in mouse primary dura cell culture: downstream effects on TGF receptors, FGF-2, and FGF-R1 mRNA levels. Plast Reconstr Surg. 2009;124(5):1466–73.

    Article  CAS  PubMed  Google Scholar 

  53. Kim HJ, Rice DP, Kettunen PJ, Thesleff I. FGF-, BMP- and Shh-mediated signalling pathways in the regulation of cranial suture morphogenesis and calvarial bone development. Development. 1998;125(7):1241–51.

    Article  CAS  PubMed  Google Scholar 

  54. Warren SM, Brunet LJ, Harland RM, Economides AN, Longaker MT. The BMP antagonist noggin regulates cranial suture fusion. Nature. 2003;422(6932):625–9.

    Article  CAS  PubMed  Google Scholar 

  55. Shen K, Krakora SM, Cunningham M, Singh M, Wang X, Hu FZ, Post JC, Ehrlich GD. Medical treatment of craniosynostosis: recombinant Noggin inhibits coronal suture closure in the rat craniosynostosis model. Orthod Craniofac Res. 2009;12(3):254–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Cooper GM, Usas A, Olshanski A, Mooney MP, Losee JE, Huard J. Ex vivo Noggin gene therapy inhibits bone formation in a mouse model of postoperative resynostosis. Plast Reconstr Surg. 2009;123(2 Suppl):94S–103S.

    Article  CAS  PubMed  Google Scholar 

  57. Justice CM, Yagnik G, Kim Y, Peter I, Jabs EW, Erazo M, Ye X, Ainehsazan E, Shi L, Cunningham ML, Kimonis V, Roscioli T, Wall SA, Wilkie AO, Stoler J, Richtsmeier JT, Heuzé Y, Sanchez-Lara PA, Buckley MF, Druschel CM, Mills JL, Caggana M, Romitti PA, Kay DM, Senders C, Taub PJ, Klein OD, Boggan J, Zwienenberg-Lee M, Naydenov C, Kim J, Wilson AF, Boyadjiev SA. A genome-wide association study identifies susceptibility loci for nonsyndromic sagittal craniosynostosis near BMP2 and within BBS9. Nat Genet. 2012;44(12):1360–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Goriely A, McVean GA, Röjmyr M, Ingemarsson B, Wilkie AO. Evidence for selective advantage of pathogenic FGFR2 mutations in the male germ line. Science. 2003;301(5633):643–6.

    Article  CAS  PubMed  Google Scholar 

  59. Holmes G, Rothschild G, Roy UB, Deng CX, Mansukhani A, Basilico C. Early onset of craniosynostosis in an Apert mouse model reveals critical features of this pathology. Dev Biol. 2009;328(2):273–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Wilkie AO. Cancer drugs to treat birth defects. Nat Genet. 2007;39(9):1057–9.

    Article  CAS  PubMed  Google Scholar 

  61. Mooney MP, Losken HW, Moursi AM, Shand JM, Cooper GM, Curry C, Ho L, Burrows AM, Stelnicki EJ, Losee JE, Opperman LA, Siegel MI. Postoperative anti-Tgf-beta2 antibody therapy improves intracranial volume and craniofacial growth in craniosynostotic rabbits. J Craniofac Surg. 2007a;18(2):336–46.

    Google Scholar 

  62. Mooney MP, Losken HW, Moursi AM, Bradley J, Azari K, Acarturk TO, Cooper GM, Thompson B, Opperman LA, Siegel MI. Anti-TGF-beta2 antibody therapy inhibits postoperative resynostosis in craniosynostotic rabbits. Plast Reconstr Surg. 2007b;119(4):1200–12.

    Google Scholar 

  63. Frazier BC, Mooney MP, Losken HW, Barbano T, Moursi A, Siegel MI, Richtsmeier JT. Comparison of craniofacial phenotype in craniosynostotic rabbits treated with anti-Tgf-beta2 at suturectomy site. Cleft Palate Craniofac J. 2008;45(6):571–82.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rachwalski, M. (2021). Experimental Animal Models in Cranial Suture Biology: Molecular and Pharmacological Treatment Strategies. In: Turgut, M., Tubbs, R.S., Turgut, A.T., Dumont, A.S. (eds) The Sutures of the Skull. Springer, Cham. https://doi.org/10.1007/978-3-030-72338-5_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-72338-5_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-72337-8

  • Online ISBN: 978-3-030-72338-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics