Skip to main content

Brain-Computer Interface Use to Control Military Weapons and Tools

  • Conference paper
  • First Online:

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1362))

Abstract

The scope of this article will take into consideration a couple of factors which could provide military benefits established by BCI technology. BCI technology is still in development state. That is why this article will mostly provide predictions for near future. Assumptions made for future of this technology are strongly based on current development state of BCI in military field of its design. All military devices described in this article are currently at development state. Defense Advanced Research Projects Agency tries to apply BCI technology in military equipment. Their work is also focused on providing help to soldiers who come back from missions with combat injuries. Article will take in consideration safety factor during combat missions, which is essential on battlefield. Most of devices described in this article are being developed to increase this factor.

Keywords

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
EUR   29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR   139.09
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR   179.34
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Paszkiel, S.: Data acquisition methods for human brain activity, analysis and classification of EEG signals for brain-computer interfaces. In: Book Series: Studies in Computational Intelligence, vol. 852, pp. 3–9 (2020). https://doi.org/10.1007/978-3-030-30581-9_2

  2. Paszkiel, S.: Using BCI in IoT implementation, analysis and classification of EEG signals for brain-computer interfaces. In: Book Series: Studies in Computational Intelligence, vol. 852, pp. 101–110 (2020). https://doi.org/10.1007/978-3-030-30581-9_12

  3. Paszkiel S.: Using neural networks for classification of the changes in the EEG signal based on facial expressions, analysis and classification of eeg signals for brain-computer interfaces. In: Book Series: Studies in Computational Intelligence, vol. 852, pp. 41–69 (2020). https://doi.org/10.1007/978-3-030-30581-9_7

  4. Major Cutter, P.A.: The shape of things to come: the military benefits of the brain-computer interface in 2040, accession number: AD1012768 (2015)

    Google Scholar 

  5. Shah, H.: Brain Computer Interface Technology: Interactive Applications You Probably Never Thought About, Futurista (2014)

    Google Scholar 

  6. Schalk, G.: Brain-computer symbiosis. J. Neural Eng. (2008)

    Google Scholar 

  7. Moore, B.E.: The brain computer interface future: time for a strategy, accession number: AD1018886 (2013)

    Google Scholar 

  8. Leuthardt, E.C., Schalk, G., Roland, J., Rouse, A., Moran, D.W.: Evolution of brain-computer interface: going beyond classic motor physiology (2009). https://doi.org/10.3171/2009.4.FOCUS0979

  9. Nicolelis, M.A., Lebedev, M.A.: Principles of neural ensemble physiology underlying the operation of brain-machine interfaces. Nat. Rev. Neurosci. 10, 530–540 (2009)

    Article  Google Scholar 

  10. Carmena, J.M., Lebedev, M.A., Crist, R.E., O’Doherty, J.E., Santucci, D.M., Dimitrov, D.F., et al.: Learning to control a brain-machine interface for reaching and grasping by primates. PLoS Biol. 1(2), E42 (2003)

    Article  Google Scholar 

  11. Wolpaw, J.R., McFarland, D.J.: Control of a two-dimensional movement signal by a noninvasive brain-computer interface in humans. Proc. Natl. Acad. Sci. U.S.A. 101, 17849–17854 (2004)

    Article  Google Scholar 

  12. Bell, C.J., Shenoy, P., Chaldhorn, R., Rao, R.: Control of a humanoid robot by a noninvasive brain-computer interface in humans. J. Neural. Eng. 5, 214–220 (2008)

    Article  Google Scholar 

  13. Kennedy, P.R., Bakay, R.A.: Restoration of neural output from a paralyzed patient by a direct brain connection. NeuroReport 9, 1707–1711 (1998)

    Article  Google Scholar 

  14. Kim, S.P., Simeral, J.D., Hochberg, L.R., Donoghue, J.P., Black, M.J.: Neural control of computer cursor velocity by decoding motor cortical spiking activity in humans with tetraplegia. J. Neural Eng. 5, 455–476 (2008)

    Article  Google Scholar 

  15. Bjornsson, C.S., Oh, C.J., Al-Kofahi, Y.A., Lim, Y.J., Smith, K.L., Turner, J.N., et al.: Effects of insertion conditions on tissue strain and vascular damage during neuroprosthetic device insertion. J. Neural Eng. 3, 196–207 (2006)

    Article  Google Scholar 

  16. Santhanam, G., Linderman, M.D., Gilja. V., Afshar. A., Ryu. S.I., Meng, T.H., et al.: Hermes B: a continuous neural recording system for freely behaving primates. IEEE Trans. Biomed. Eng. 54, 2037–2050 (2007)

    Google Scholar 

  17. Kotchetkov, I.S., Hwang, B.Y., Appelboom, G., Kellner, C., Connolly, E.: Brain-computer interfaces: military, neurosurgical, and ethical perspective (2010). https://doi.org/10.3171/2010.2.FOCUS1027

  18. Birbaumer, N., et al.: he thought translation device (TTD) for completely paralyzed patients. IEEE Trans. Rehabil. Eng. 8(2), 190–193 (2000). https://doi.org/10.1109/86.847812

  19. Blankertz, B., Dornhege, G., Krauledat, M., Müler, K.R., Kunzmann, V., Losch, F., Curio, G.: The Berlin brain–computer interface: EEG-based communication without subject training (2006). https://doi.org/10.1109/TNSRE.2006.875557

  20. Porbadnigk, A., Wester, M., Calliess, J., Schultz, T.: EEG-based speech recognition – impact of temporal effects, Biosignals 2009, Porto, Portugal (2009)

    Google Scholar 

  21. DaSalla, C.S., Kambara, H., Koike, Y., Sato, M.: Spatial filtering and single-trial classification of EEG during vowel speech imagery (2009). https://doi.org/10.1145/1592700.1592731

  22. Denby, B., Schultz, T., Honda, K., Hueber, T., Gilbert, J.M., Brumberg, J.S.: Silent Speech Interfaces (2010). https://doi.org/10.1016/j.specom.2009.08.002

  23. Williams, E.: JASON Defense Advisory Panel Reports: Human Performance, JSR-07-–625 (2008)

    Google Scholar 

  24. Chamola, V., Vineet, A., Nayyar, A., Hossain, E.: Brain-computer interface-based humanoid control: a review (2020). https://doi.org/10.3390/s20133620

  25. Collinger, J.L., Kryger, M.A., Barbara, R., Betler, T., Bowsher, K., Brown, E.H.P., Clanton, S.T., Degenhart, A.D., Foldes, S.T.,Gaunt, R.A.,Gyulai, F.E., Harchick, E.A., Harrington, D.,Helder, J.B.,Hemmes, T., Johannes, M.S., Katyal, K.D., Ling, G.S.F.,Mcmorland, A.J.C., Palko, K., Para, M.P., Scheuermann, J., Schwartz, A.B., Skidmore, E.R., Solzbacher, F., Srikameswaran, A.V., Swanson, D.P., Swetz, S., Tyler-Kabara, E.C.,Velliste, M., Wang, W., Weber, D.J., Wodlinger, B., Boninger, M.L.: Collaborative approach in the development of high-performance brain-computer interface for a neuroprosthetic arm: translation from animal models to human control (2013). https://doi.org/10.1111/cts.12086

  26. Collinger, J.L., Wodlinger, B., Downey, J.E., Wang, W., Tyler-Kabara, E.C., Weber, D.J.: High performance neuroprosthetic control by an individual with tetraplegia (2013). https://doi.org/10.1016/S0140-6736(12)61816-9

  27. Zaaimi, B., Ruiz-Torres, R., Solla, S.A., Miller, L.E.: Multi-electrode stimulation in somatosensory cortex increases probability of detection (2013). https://doi.org/10.1088/1741-2560/10/5/056013

  28. Chen, K.H., Dammann, J.F., Boback, J.L., Otto, K.J., Gaunt, R.A., et al.: The effect of chronic intracortical microstimulation on the electrode-tissue interface (2014). https://doi.org/10.1088/1741-2560/11/2/026004

  29. Berg, J.A., Dammann, J.F., Tenore, F.V., Tabot, G.A., Boback, J.L., Manfredi, L.R.: Behavioral demonstration of a somatosensory neuroprosthesis (2013). https://doi.org/10.1109/TNSRE.2013.2244616

  30. Miranda, R.A., Casebeer, W.D., Hein, A.M., Judy, J.W., Krotkov, E.P., Laabs, T.L., Manzo, J.E., Pankratz, K.G., Pratt, G.A., Sanchez, J.C., Weber, D.J., Wheeler, T.L., Ling, G.S.F.: DARPA-funded efforts in the development of novel brain-computer interface technologies (2014). https://doi.org/10.1016/j.neumeth.2014.07.019

  31. Paszkiel, S., Dobrakowski, P., Lysiak, A.: The impact of different sounds on stress level in the context of EEG, cardiac measures and subjective stress level: a pilot study. Brain Sci. 10(10), Article Number: 728 (2020). https://doi.org/10.3390/brainsci10100728,

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Czech, A. (2021). Brain-Computer Interface Use to Control Military Weapons and Tools. In: Paszkiel, S. (eds) Control, Computer Engineering and Neuroscience. ICBCI 2021. Advances in Intelligent Systems and Computing, vol 1362. Springer, Cham. https://doi.org/10.1007/978-3-030-72254-8_20

Download citation

Publish with us

Policies and ethics