Abstract
The scope of this article will take into consideration a couple of factors which could provide military benefits established by BCI technology. BCI technology is still in development state. That is why this article will mostly provide predictions for near future. Assumptions made for future of this technology are strongly based on current development state of BCI in military field of its design. All military devices described in this article are currently at development state. Defense Advanced Research Projects Agency tries to apply BCI technology in military equipment. Their work is also focused on providing help to soldiers who come back from missions with combat injuries. Article will take in consideration safety factor during combat missions, which is essential on battlefield. Most of devices described in this article are being developed to increase this factor.
Keywords
This is a preview of subscription content, log in via an institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsReferences
Paszkiel, S.: Data acquisition methods for human brain activity, analysis and classification of EEG signals for brain-computer interfaces. In: Book Series: Studies in Computational Intelligence, vol. 852, pp. 3–9 (2020). https://doi.org/10.1007/978-3-030-30581-9_2
Paszkiel, S.: Using BCI in IoT implementation, analysis and classification of EEG signals for brain-computer interfaces. In: Book Series: Studies in Computational Intelligence, vol. 852, pp. 101–110 (2020). https://doi.org/10.1007/978-3-030-30581-9_12
Paszkiel S.: Using neural networks for classification of the changes in the EEG signal based on facial expressions, analysis and classification of eeg signals for brain-computer interfaces. In: Book Series: Studies in Computational Intelligence, vol. 852, pp. 41–69 (2020). https://doi.org/10.1007/978-3-030-30581-9_7
Major Cutter, P.A.: The shape of things to come: the military benefits of the brain-computer interface in 2040, accession number: AD1012768 (2015)
Shah, H.: Brain Computer Interface Technology: Interactive Applications You Probably Never Thought About, Futurista (2014)
Schalk, G.: Brain-computer symbiosis. J. Neural Eng. (2008)
Moore, B.E.: The brain computer interface future: time for a strategy, accession number: AD1018886 (2013)
Leuthardt, E.C., Schalk, G., Roland, J., Rouse, A., Moran, D.W.: Evolution of brain-computer interface: going beyond classic motor physiology (2009). https://doi.org/10.3171/2009.4.FOCUS0979
Nicolelis, M.A., Lebedev, M.A.: Principles of neural ensemble physiology underlying the operation of brain-machine interfaces. Nat. Rev. Neurosci. 10, 530–540 (2009)
Carmena, J.M., Lebedev, M.A., Crist, R.E., O’Doherty, J.E., Santucci, D.M., Dimitrov, D.F., et al.: Learning to control a brain-machine interface for reaching and grasping by primates. PLoS Biol. 1(2), E42 (2003)
Wolpaw, J.R., McFarland, D.J.: Control of a two-dimensional movement signal by a noninvasive brain-computer interface in humans. Proc. Natl. Acad. Sci. U.S.A. 101, 17849–17854 (2004)
Bell, C.J., Shenoy, P., Chaldhorn, R., Rao, R.: Control of a humanoid robot by a noninvasive brain-computer interface in humans. J. Neural. Eng. 5, 214–220 (2008)
Kennedy, P.R., Bakay, R.A.: Restoration of neural output from a paralyzed patient by a direct brain connection. NeuroReport 9, 1707–1711 (1998)
Kim, S.P., Simeral, J.D., Hochberg, L.R., Donoghue, J.P., Black, M.J.: Neural control of computer cursor velocity by decoding motor cortical spiking activity in humans with tetraplegia. J. Neural Eng. 5, 455–476 (2008)
Bjornsson, C.S., Oh, C.J., Al-Kofahi, Y.A., Lim, Y.J., Smith, K.L., Turner, J.N., et al.: Effects of insertion conditions on tissue strain and vascular damage during neuroprosthetic device insertion. J. Neural Eng. 3, 196–207 (2006)
Santhanam, G., Linderman, M.D., Gilja. V., Afshar. A., Ryu. S.I., Meng, T.H., et al.: Hermes B: a continuous neural recording system for freely behaving primates. IEEE Trans. Biomed. Eng. 54, 2037–2050 (2007)
Kotchetkov, I.S., Hwang, B.Y., Appelboom, G., Kellner, C., Connolly, E.: Brain-computer interfaces: military, neurosurgical, and ethical perspective (2010). https://doi.org/10.3171/2010.2.FOCUS1027
Birbaumer, N., et al.: he thought translation device (TTD) for completely paralyzed patients. IEEE Trans. Rehabil. Eng. 8(2), 190–193 (2000). https://doi.org/10.1109/86.847812
Blankertz, B., Dornhege, G., Krauledat, M., Müler, K.R., Kunzmann, V., Losch, F., Curio, G.: The Berlin brain–computer interface: EEG-based communication without subject training (2006). https://doi.org/10.1109/TNSRE.2006.875557
Porbadnigk, A., Wester, M., Calliess, J., Schultz, T.: EEG-based speech recognition – impact of temporal effects, Biosignals 2009, Porto, Portugal (2009)
DaSalla, C.S., Kambara, H., Koike, Y., Sato, M.: Spatial filtering and single-trial classification of EEG during vowel speech imagery (2009). https://doi.org/10.1145/1592700.1592731
Denby, B., Schultz, T., Honda, K., Hueber, T., Gilbert, J.M., Brumberg, J.S.: Silent Speech Interfaces (2010). https://doi.org/10.1016/j.specom.2009.08.002
Williams, E.: JASON Defense Advisory Panel Reports: Human Performance, JSR-07-–625 (2008)
Chamola, V., Vineet, A., Nayyar, A., Hossain, E.: Brain-computer interface-based humanoid control: a review (2020). https://doi.org/10.3390/s20133620
Collinger, J.L., Kryger, M.A., Barbara, R., Betler, T., Bowsher, K., Brown, E.H.P., Clanton, S.T., Degenhart, A.D., Foldes, S.T.,Gaunt, R.A.,Gyulai, F.E., Harchick, E.A., Harrington, D.,Helder, J.B.,Hemmes, T., Johannes, M.S., Katyal, K.D., Ling, G.S.F.,Mcmorland, A.J.C., Palko, K., Para, M.P., Scheuermann, J., Schwartz, A.B., Skidmore, E.R., Solzbacher, F., Srikameswaran, A.V., Swanson, D.P., Swetz, S., Tyler-Kabara, E.C.,Velliste, M., Wang, W., Weber, D.J., Wodlinger, B., Boninger, M.L.: Collaborative approach in the development of high-performance brain-computer interface for a neuroprosthetic arm: translation from animal models to human control (2013). https://doi.org/10.1111/cts.12086
Collinger, J.L., Wodlinger, B., Downey, J.E., Wang, W., Tyler-Kabara, E.C., Weber, D.J.: High performance neuroprosthetic control by an individual with tetraplegia (2013). https://doi.org/10.1016/S0140-6736(12)61816-9
Zaaimi, B., Ruiz-Torres, R., Solla, S.A., Miller, L.E.: Multi-electrode stimulation in somatosensory cortex increases probability of detection (2013). https://doi.org/10.1088/1741-2560/10/5/056013
Chen, K.H., Dammann, J.F., Boback, J.L., Otto, K.J., Gaunt, R.A., et al.: The effect of chronic intracortical microstimulation on the electrode-tissue interface (2014). https://doi.org/10.1088/1741-2560/11/2/026004
Berg, J.A., Dammann, J.F., Tenore, F.V., Tabot, G.A., Boback, J.L., Manfredi, L.R.: Behavioral demonstration of a somatosensory neuroprosthesis (2013). https://doi.org/10.1109/TNSRE.2013.2244616
Miranda, R.A., Casebeer, W.D., Hein, A.M., Judy, J.W., Krotkov, E.P., Laabs, T.L., Manzo, J.E., Pankratz, K.G., Pratt, G.A., Sanchez, J.C., Weber, D.J., Wheeler, T.L., Ling, G.S.F.: DARPA-funded efforts in the development of novel brain-computer interface technologies (2014). https://doi.org/10.1016/j.neumeth.2014.07.019
Paszkiel, S., Dobrakowski, P., Lysiak, A.: The impact of different sounds on stress level in the context of EEG, cardiac measures and subjective stress level: a pilot study. Brain Sci. 10(10), Article Number: 728 (2020). https://doi.org/10.3390/brainsci10100728,
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Czech, A. (2021). Brain-Computer Interface Use to Control Military Weapons and Tools. In: Paszkiel, S. (eds) Control, Computer Engineering and Neuroscience. ICBCI 2021. Advances in Intelligent Systems and Computing, vol 1362. Springer, Cham. https://doi.org/10.1007/978-3-030-72254-8_20
Download citation
DOI: https://doi.org/10.1007/978-3-030-72254-8_20
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-72253-1
Online ISBN: 978-3-030-72254-8
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)
