Skip to main content

Robustness of Meta Matrix Factorization Against Strict Privacy Constraints

Part of the Lecture Notes in Computer Science book series (LNISA,volume 12657)


In this paper, we explore the reproducibility of MetaMF, a meta matrix factorization framework introduced by Lin et al. MetaMF employs meta learning for federated rating prediction to preserve users’ privacy. We reproduce the experiments of Lin et al. on five datasets, i.e., Douban, Hetrec-MovieLens, MovieLens 1M, Ciao, and Jester. Also, we study the impact of meta learning on the accuracy of MetaMF’s recommendations. Furthermore, in our work, we acknowledge that users may have different tolerances for revealing information about themselves. Hence, in a second strand of experiments, we investigate the robustness of MetaMF against strict privacy constraints. Our study illustrates that we can reproduce most of Lin et al.’s results. Plus, we provide strong evidence that meta learning is essential for MetaMF’s robustness against strict privacy constraints.


This is a preview of subscription content, log in via an institution.

Buying options

USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions


  1. 1., Last accessed Oct. 2020.

  2. 2.

  3. 3.


  1. Abdollahpouri, H., Mansoury, M., Burke, R., Mobasher, B.: The unfairness of popularity bias in recommendation. In: Workshop on Recommendation in Multistakeholder Environments in Conjunction with RecSys 2019 (2019)

    Google Scholar 

  2. Ammad-Ud-Din, M., et al.: Federated collaborative filtering for privacy-preserving personalized recommendation system. arXiv preprint arXiv:1901.09888 (2019)

  3. Cantador, I., Brusilovsky, P., Kuflik, T.: Second international workshop on information heterogeneity and fusion in recommender systems. In: RecSys 2011 (2011)

    Google Scholar 

  4. Chen, C., Zhang, J., Tung, A.K., Kankanhalli, M., Chen, G.: Robust federated recommendation system. arXiv preprint arXiv:2006.08259 (2020)

  5. Chen, F., Luo, M., Dong, Z., Li, Z., He, X.: Federated meta-learning with fast convergence and efficient communication. arXiv preprint arXiv:1802.07876 (2018)

  6. Duriakova, E., et al.: PDMFRec: a decentralised matrix factorisation with tunable user-centric privacy. In: RecSys 2019 (2019)

    Google Scholar 

  7. Finn, C., Abbeel, P., Levine, S.: Model-agnostic meta-learning for fast adaptation of deep networks. In: ICML 2017 (2017)

    Google Scholar 

  8. Glorot, X., Bordes, A., Bengio, Y.: Deep sparse rectifier neural networks. In: AISTATS 2011 (2011)

    Google Scholar 

  9. Goldberg, K., Roeder, T., Gupta, D., Perkins, C.: Eigentaste: a constant time collaborative filtering algorithm. Inf. Retrieval 4(2), 133–151 (2001)

    Article  Google Scholar 

  10. Guo, G., Zhang, J., Thalmann, D., Yorke-Smith, N.: ETAF: an extended trust antecedents framework for trust prediction. In: ASONAM 2014 (2014)

    Google Scholar 

  11. Ha, D., Dai, A., Le, Q.V.: Hypernetworks. In: ICLR 2016 (2016)

    Google Scholar 

  12. Hahnloser, R.H., Sarpeshkar, R., Mahowald, M.A., Douglas, R.J., Seung, H.S.: Digital selection and analogue amplification coexist in a cortex-inspired silicon circuit. Nature 405(6789), 947–951 (2000)

    Article  Google Scholar 

  13. Harper, F.M., Konstan, J.A.: The movielens datasets: history and context. ACM Trans. Interact. Intell. Syst. (TIIS) 5(4), 1–19 (2015)

    Google Scholar 

  14. Hu, L., Sun, A., Liu, Y.: Your neighbors affect your ratings: on geographical neighborhood influence to rating prediction. In: SIGIR 2014 (2014)

    Google Scholar 

  15. Jiang, Y., Konečnỳ, J., Rush, K., Kannan, S.: Improving federated learning personalization via model agnostic meta learning. In: International Workshop on Federated Learning for User Privacy and Data Confidentiality in conjunction with NeurIPS 2019 (2019)

    Google Scholar 

  16. Lin, Y., et al.: Meta matrix factorization for federated rating predictions. In: SIGIR 2020 (2020)

    Google Scholar 

  17. Maaten, L.V.D., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9(Nov), 2579–2605 (2008)

    Google Scholar 

  18. Müllner, P., Kowald, D., Lex, E.: User Groups for Robustness of Meta Matrix Factorization Against Decreasing Privacy Budgets (2020).

  19. Schedl, M., Bauer, C.: Distance-and rank-based music mainstreaminess measurement. In: UMAP 2017 (2017)

    Google Scholar 

  20. Snell, J., Swersky, K., Zemel, R.: Prototypical networks for few-shot learning. In: NIPS 2017 (2017)

    Google Scholar 

  21. Willmott, C.J., Matsuura, K.: Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Climate Res. 30(1), 79–82 (2005)

    Article  Google Scholar 

Download references


We thank the Social Computing team for their rich feedback on this work. This work is supported by the H2020 project TRUSTS (GA: 871481) and the “DDAI” COMET Module within the COMET – Competence Centers for Excellent Technologies Programme, funded by the Austrian Federal Ministry for Transport, Innovation and Technology (bmvit), the Austrian Federal Ministry for Digital and Economic Affairs (bmdw), the Austrian Research Promotion Agency (FFG), the province of Styria (SFG) and partners from industry and academia. The COMET Programme is managed by FFG.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Peter Muellner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Muellner, P., Kowald, D., Lex, E. (2021). Robustness of Meta Matrix Factorization Against Strict Privacy Constraints. In: Hiemstra, D., Moens, MF., Mothe, J., Perego, R., Potthast, M., Sebastiani, F. (eds) Advances in Information Retrieval. ECIR 2021. Lecture Notes in Computer Science(), vol 12657. Springer, Cham.

Download citation

  • DOI:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-72239-5

  • Online ISBN: 978-3-030-72240-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics