Skip to main content

LEMONS: Listenable Explanations for Music recOmmeNder Systems

Part of the Lecture Notes in Computer Science book series (LNISA,volume 12657)

Abstract

Although current music recommender systems suggest new tracks to their users, they do not provide listenable explanations of why a user should listen to them. LEMONS (Demonstration video: https://youtu.be/giSPrPnZ7mc) is a new system that addresses this gap by (1) adopting a deep learning approach to generate audio content-based recommendations from the audio tracks and (2) providing listenable explanations based on the time-source segmentation of the recommended tracks using the recently proposed audioLIME.

Keywords

  • Music recommendation
  • Explainability
  • audioLIME
  • Content-based recommendation

A. B. Melchiorre and V. Haunschmid—These authors contributed equally.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-72240-1_60
  • Chapter length: 6 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   149.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-72240-1
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   199.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.

Notes

  1. 1.

    https://github.com/cpjku/lemons.

  2. 2.

    Details about training and architecture can be found in our GitHub repository.

  3. 3.

    https://www.7digital.com/.

References

  1. Tintarev, N., Masthoff, J.: Explaining recommendations: design and evaluation. In: Ricci, F., Rokach, L., Shapira, B. (eds.) Recommender Systems Handbook, pp. 353–382. Springer, Boston (2015). https://doi.org/10.1007/978-1-4899-7637-6_10

    CrossRef  Google Scholar 

  2. Balog, K., Radlinski, F.: Measuring recommendation explanation quality: the conflicting goals of explanations. In: Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 329–338. Association for Computing Machinery (2020)

    Google Scholar 

  3. Arrieta, A.B., et al.: Explainable artificial intelligence (XAI): concepts, taxonomies, opportunities and challenges toward responsible AI. Inf. Fusion 58, 82–115 (2020)

    CrossRef  Google Scholar 

  4. Zhang, Y., Chen, X.: Explainable recommendation: a survey and new perspectives. Found. Trends Inf. Retrieval 14(1), 1–101 (2020)

    CrossRef  MathSciNet  Google Scholar 

  5. Zhang, Y., Lai, G., Zhang, M., Zhang, Y., Liu, Y., Ma, S.: Explicit factor models for explainable recommendation based on phrase-level sentiment analysis. In: Proceedings of the 37th International ACM SIGIR Conference on Research & Development in Information Retrieval, pp. 83–92. Association for Computing Machinery (2014)

    Google Scholar 

  6. Tsukuda, K., Goto, M.: Explainable recommendation for repeat consumption. In: 14th ACM Conference on Recommender Systems, pp. 462–467. Association for Computing Machinery (2020)

    Google Scholar 

  7. Li, P., Wang, Z., Ren, Z., Bing, L., Lam, W.: Neural rating regression with abstractive tips generation for recommendation share on. In: Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 345–354. Association for Computing Machinery (2017)

    Google Scholar 

  8. Chang, S., Harper, F.M., Terveen, L.G.: Crowd-based personalized natural language explanations for recommendations. In: Proceedings of the 10th ACM Conference on Recommender Systems, pp. 175–182. Association for Computing Machinery (2016)

    Google Scholar 

  9. Chen, X., et al.: Personalized fashion recommendation with visual explanations based on multimodal attention network: towards visually explainable recommendation. In: Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 765–774. Association for Computing Machinery (2019)

    Google Scholar 

  10. Kouki, P., Schaffer, J., Pujara, J., O’Donovan, J., Getoor, L.: User preferences for hybrid explanations. In: Proceedings of the 11th ACM Conference on Recommender Systems, pp. 84–88. Association for Computing Machinery (2017)

    Google Scholar 

  11. Herlocker, J.L., Konstan, J.A., Riedl, J.: Explaining collaborative filtering recommendations. In: Proceedings of the 2000 ACM Conference on Computer Supported Cooperative Work, pp. 241–250. Association for Computing Machinery (2000)

    Google Scholar 

  12. Vig, J., Sen, S., Riedl, J.: Tagsplanations: explaining recommendations using tags. In: Proceedings of the 14th International Conference on Intelligent User Interfaces, pp. 47–56. Association for Computing Machinery (2009)

    Google Scholar 

  13. Green, S.J., et al.: Generating transparent, steerable recommendations from textual descriptions of items. In: Proceedings of the 3rd ACM Conference on Recommender Systems, pp. 329–338. Association for Computing Machinery (2009)

    Google Scholar 

  14. Millecamp, M., Htun, N.N., Conati, C., Verbert, K.: To explain or not to explain: the effects of personal characteristics when explaining music recommendations. In: Proceedings of the 24th International Conference on Intelligent User Interfaces, pp. 397–407. Association for Computing Machinery (2019)

    Google Scholar 

  15. Sharma, A., Cosley, D.: Do social explanations work? Studying and modeling the effects of social explanations in recommender systems. In: Proceedings of the 22nd International Conference on World Wide Web, pp. 1133–1144. Association for Computing Machinery (2013)

    Google Scholar 

  16. Zhao, G., et al.: Personalized reason generation for explainable song recommendation. ACM Trans. Intell. Syst. Technol. 10(4), 1–21 (2019)

    CrossRef  Google Scholar 

  17. Wang, X., Wang, D., Xu, C., He, X., Cao, Y., Chua, T.S.: Explainable reasoning over knowledge graphs for recommendation. In: Proceedings of the 33rd AAAI Conference on Artificial Intelligence, vol. 33, pp. 5329–5336. Association for the Advancement of Artificial Intelligence Press (2019)

    Google Scholar 

  18. Haunschmid, V., Manilow, E., Widmer, G.: audioLIME: listenable explanations using source separation. In: 13th International Workshop on Machine Learning and Music, pp. 20–24 (2020)

    Google Scholar 

  19. Won, M., Ferraro, A., Bogdanov, D., Serra, X.: Evaluation of CNN-based automatic music tagging models. In: Proceedings of 17th Sound and Music Computing (2020)

    Google Scholar 

  20. Choi, K., Fazekas, G., Sandler, M.: Automatic tagging using deep convolutional neural networks. In: Proceedings of the 17th International Conference on Music Information Retrieval (ISMIR 2016), pp. 805–811 (2016)

    Google Scholar 

  21. Pan, R., et al.: One-class collaborative filtering. In: 2008 Eighth IEEE International Conference on Data Mining, pp. 502–511. Institute of Electrical and Electronics Engineers (2008)

    Google Scholar 

  22. Ribeiro, M.T., Singh, S., Guestrin, C.: “Why should i trust you?”: explaining the predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1135–1144. Association for Computing Machinery (2016)

    Google Scholar 

  23. Haunschmid, V., Manilow, E., Widmer, G.: Towards Musically Meaningful Explanations Using Source Separation. CoRR abs/2009.02051 (2020). https://arxiv.org/abs/2009.02051

  24. Bertin-Mahieux, T., Ellis, D.P., Whitman, B., Lamere, P.: The million song dataset. In: Proceedings of the 12th International Conference on Music Information Retrieval (ISMIR 2011), pp. 591–596. University of Miami (2011)

    Google Scholar 

  25. Rafii, Z., Liutkus, A., Stöter, F.R., Mimilakis, S.I., Bittner, R.: MUSDB18 - A Corpus for Music Separation (2017)

    Google Scholar 

  26. Hennequin, R., Khlif, A., Voituret, F., Moussallam, M.: Spleeter: a fast and efficient music source separation tool with pre-trained models. J. Open Source Softw. 5(50), 2154 (2020)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro B. Melchiorre .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Melchiorre, A.B., Haunschmid, V., Schedl, M., Widmer, G. (2021). LEMONS: Listenable Explanations for Music recOmmeNder Systems. In: Hiemstra, D., Moens, MF., Mothe, J., Perego, R., Potthast, M., Sebastiani, F. (eds) Advances in Information Retrieval. ECIR 2021. Lecture Notes in Computer Science(), vol 12657. Springer, Cham. https://doi.org/10.1007/978-3-030-72240-1_60

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-72240-1_60

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-72239-5

  • Online ISBN: 978-3-030-72240-1

  • eBook Packages: Computer ScienceComputer Science (R0)