Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. In: Proceedings of ICLR (2015). http://arxiv.org/abs/1409.0473
Celikyilmaz, A., Bosselut, A., He, X., Choi, Y.: Deep communicating agents for abstractive summarization. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, volume 1 (Long Papers), pp. 1662–1675 (2018)
Google Scholar
Cohan, A., Dernoncourt, F., Kim, D.S., Bui, T., Kim, S., Chang, W., Goharian, N.: A discourse-aware attention model for abstractive summarization of long documents. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, vol. 2 (Short Papers), pp. 615–621 (2018)
Google Scholar
Conneau, A., Kiela, D., Schwenk, H., Barrault, L., Bordes, A.: Supervised learning of universal sentence representations from natural language inference data. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, pp. 670–680 (2017)
Google Scholar
Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186 (2019)
Google Scholar
Hermann, K.M., et al.: Teaching machines to read and comprehend. In: Advances in Neural Information Processing Systems, pp. 1693–1701 (2015)
Google Scholar
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: ICLR (2015)
Google Scholar
Koupaee, M., Wang, W.Y.: Wikihow: a large scale text summarization dataset. CoRR abs/1810.09305 (2018). http://arxiv.org/abs/1810.09305
Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: International Conference on Machine Learning, pp. 957–966 (2015)
Google Scholar
Luong, M., Pham, H., Manning, C.D.: Effective approaches to attention-based neural machine translation. In: Proceedings of EMNLP, pp. 1412–1421 (2015). http://arxiv.org/abs/1508.04025
Makino, T., Iwakura, T., Takamura, H., Okumura, M.: Global optimization under length constraint for neural text summarization. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 1039–1048 (2019). https://www.aclweb.org/anthology/P19-1099
Nallapati, R., Xiang, B., Zhou, B.: Sequence-to-sequence RNNs for text summarization. In: Proceedings of ICLR: Workshop Track (2016). http://arxiv.org/abs/1602.06023
Nenkova, A., McKeown, K.R.: Automatic summarization. Found. Trends Inf. Retr. 5(2–3), 103–233 (2011)
CrossRef
Google Scholar
Paulus, R., Xiong, C., Socher, R.: A deep reinforced model for abstractive summarization. In: Proceedings of ICLR (2018). http://arxiv.org/abs/1705.04304
See, A., Liu, P.J., Manning, C.D.: Get to the point: summarization with pointer-generator networks. In: Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 1073–1083 (2017)
Google Scholar
Tan, J., Wan, X., Xiao, J.: Abstractive document summarization with a graph-based attentional neural model. In: Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 1171–1181. Association for Computational Linguistics (2017). https://doi.org/10.18653/v1/P17-1108. http://aclweb.org/anthology/P17-1108
Vaswani, A., et al.: Attention is all you need. In: Proceedings of NeurIPS (2017)
Google Scholar
You, Y., Jia, W., Liu, T., Yang, W.: Improving abstractive document summarization with salient information modeling. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 2132–2141 (2019). https://www.aclweb.org/anthology/P19-1205
Zhelezniak, V., Savkov, A., Shen, A., Moramarco, F., Flann, J., Hammerla, N.Y.: Don’t settle for average, go for the max: fuzzy sets and max-pooled word vectors. In: Proceedings of ICLR (2019)
Google Scholar