Skip to main content

Part of the book series: Studies in Computational Intelligence ((SCI,volume 972))

Abstract

The availability of biometric data for cybersecurity studies is very important and the Generative Adversarial Network (GAN) provides a means of generating realistic fake biometric data that may mitigate some of the privacy concerns with using real biometric data. This paper trains a Deep Convolutional Generative Adversarial Network (DCGAN) to generate fake biometric fingerprint images. The quality of the generated images is measured using the NFIQ2 algorithm and although the qualitative analysis of the fake fingerprints indicate that the images are of good quality, the NFIQ2 scores obtained for the fake fingerprints are of low utility value. We also explore fingerprint matching by first extracting the minutiae feature points from both the fake generated fingerprint samples and the real fingerprint images using the MINDTCT technique. The minutiae feature points from the fake fingerprint images are then matched (one-to-many) against feature points extracted from real fingerprint images using the BOZORTH3 algorithm. This is done in order to appraise the GANs ability to generate data points with features that generalize beyond the precise domain of the training datasets features. The results from the fingerprint matching show that the fake generated fingerprint samples contain unique fingerprint images.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Goodfellow, I. (2016). NIPS 2016 tutorial: Generative adversarial networks. arXiv preprint arXiv:1701.00160.

  2. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., & Bengio, Y. (2014). Generative adversarial nets. In Advances in Neural Information Processing Systems (pp. 2672–2680).

    Google Scholar 

  3. Goodfellow, I., Bengio, Y., Courville, A., & Bengio, Y. (2016). Deep learning (Vol. 1). Cambridge: MIT press.

    MATH  Google Scholar 

  4. Karras, T., Laine, S., & Aila, T., (2019). A style-based generator architecture for generative adversarial networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 4401–4410).

    Google Scholar 

  5. Ledig, C., Theis, L., Huszar, F., Caballero, J., Aitken, A. P., Tejani, A., Totz, J., Wang, Z., & Shi, W. (2016). Photo-realistic single image super-resolution using a generative adversarial network. CoRR, abs/1609.04802.

    Google Scholar 

  6. Zhu, J. –Y., Krähenbühl, P., Shechtman, E., & Efros, A. A. (2016). Generative visual manipulation on the natural image manifold. In European Conference on Computer Vision (pp. 597–613). Springer.

    Google Scholar 

  7. Brock, A., Donahue, J., & Simonyan, K., (2018). Large scale gan training for high fidelity natural image synthesis. arXiv preprint arXiv:1809.11096.

  8. Isola, P., Zhu, J. Y., Zhou, T., Efros, A. A. (2017) Image-to-image translation with conditional adversarial networks. arXiv preprint arXiv:1611.07004.

  9. Radford, A., Metz, L., & Chintala, S. (2015). Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434.

  10. Yinka-Banjo, C., & Ugot, O. A. (2019). A review of generative adversarial networks and its application in cybersecurity. Artificial Intelligence Review 1–16.

    Google Scholar 

  11. Hitaj, B., Gasti, P., Ateniese, G., & Perez-Cruz, F. (2017). Passgan: A deep learning approach for password guessing. arXiv preprint arXiv:1709.00440.

  12. Hu, W., & Tan, Y. (2017). Generating adversarial malware examples for black-box attacks based on GAN. arXiv preprint arXiv:1702.05983.

  13. Akinyemi, M., Yinka-Banjo, C., Ugot, O. A., & Nwachuku, A. (2020, March). Estimating the time-lapse between medical insurance reimbursement with non-parametric regression models. In Future of Information and Communication Conference (pp. 692–704). Cham: Springer.

    Google Scholar 

  14. Voyant, C., Notton, G., Kalogirou, S., Nivet, M. L., Paoli, C., Motte, F., et al. (2017). Machine learning methods for solar radiation forecasting: A review. Renewable Energy, 105, 569–582.

    Article  Google Scholar 

  15. Luger, G. F. (2005) Artificial intelligence: Structures and strategies for complex problem solving. Pearson education.

    Google Scholar 

  16. Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A., et al. (2017). Mastering the game of go without human knowledge. Nature, 550(7676), 354.

    Article  Google Scholar 

  17. Van Hasselt, H., Guez, A., & Silver, D. (2016). Deep reinforcement learning with double Q-Learning. In AAAI (Vol. 16, pp. 2094–2100).

    Google Scholar 

  18. Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap, T., Harley, T., Silver, D., & Kavukcuoglu, K. (2016). Asynchronous methods for deep reinforcement learning. In International Conference on Machine Learning (pp. 1928–1937).

    Google Scholar 

  19. Schalkoff, R. J. (1997). Artificial Neural Networks (Vol. 1). New York: McGraw-Hill.

    MATH  Google Scholar 

  20. Esteva, A., Robicquet, A., Ramsundar, B., Kuleshov, V., DePristo, M., Chou, K., et al. (2019). A guide to deep learning in healthcare. Nature Medicine, 25(1), 24–29.

    Article  Google Scholar 

  21. Mohsen, H., El-Dahshan, E. S. A., El-Horbaty, E. S. M., & Salem, A. B. M. (2018). Classification using deep learning neural networks for brain tumors. Future Computing and Informatics Journal, 3(1), 68–71.

    Article  Google Scholar 

  22. Homayoun, S., Ahmadzadeh, M., Hashemi, S., Dehghantanha, A. & Khayami, R. (2018). BoTShark: A deep learning approach for botnet traffic detection. In: Cyber Threat Intelligence (pp. 137–153). Cham: Springer.

    Google Scholar 

  23. Fawaz, H. I., Forestier, G., Weber, J., Idoumghar, L., & Muller, P. A. (2019). Deep learning for time series classification: A review. Data Mining and Knowledge Discovery, 33(4), 917–963.

    Article  MathSciNet  Google Scholar 

  24. Lotter, W., Kreiman, G., & Cox, D. (2016). Deep predictive coding networks for video prediction and unsupervised learning. arXiv preprint arXiv:1605.08104.

  25. Yinka-Banjo, C., & Ugot, O. A. (2018). A predictive model for automatic generation control in smart grids using artificial neural networks. In C. Yinka-Banjo & O. Ugot (Eds.), AFRICATEK 2018: 2nd EAI International Conference on Emerging Technologies for Developing Countries, Cotonou, Benin.

    Google Scholar 

  26. Lu, X., Zhong, Y., Zheng, Z., Liu, Y., Zhao, J., Ma, A., et al. (2019). Multi-scale and multi-task deep learning framework for automatic road extraction. IEEE Transactions on Geoscience and Remote Sensing, 57(11), 9362–9377.

    Article  Google Scholar 

  27. Bae, J. W., Rykhlevskii, A., Chee, G., & Huff, K. D. (2020). Deep learning approach to nuclear fuel transmutation in a fuel cycle simulator. Annals of Nuclear Energy, 139,.

    Article  Google Scholar 

  28. Zhang, S., Yao, L., Sun, A., & Tay, Y. (2019). Deep learning based recommender system: A survey and new perspectives. ACM Computing Surveys (CSUR), 52(1), 1–38.

    Google Scholar 

  29. Kingma, D. P, Salimans, T., Welling, M. (2016). Improving variational inference with inverse autoregressive flow. NIPS.

    Google Scholar 

  30. Russell, S. J., & Norvig, P. (2016). Artificial intelligence: A modern approach. Malaysia: Pearson Education Limited.

    MATH  Google Scholar 

  31. Bengio, Y. (2009). Learning deep architectures for AI. Foundations and trends® in Machine Learning, 2(1), pp. 1–127.

    Google Scholar 

  32. Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I., & Fergus, R. (2013). Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199.

  33. Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980.

  34. Witten, I. H., Frank, E., Hall, M. A., & Pal, C. J. (2016). Data mining: Practical machine learning tools and techniques. Morgan Kaufmann.

    Google Scholar 

  35. Marsland, S. (2011). Machine learning: an algorithmic perspective. Chapman and Hall/CRC.

    Google Scholar 

  36. Kelley, H. J. (1960). Gradient theory of optimal flight paths. Ars Journal, 30(10), 947–954.

    Article  Google Scholar 

  37. Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by back-propagating errors. Nature, 323(6088), 533.

    Google Scholar 

  38. Frey, B. J., Hinton, G. E., & Dayan, P. (1996). Does the wake-sleep algorithm produce good density estimators? In Advances in neural information processing systems (pp. 661–667).

    Google Scholar 

  39. Oord, A. V. D, Kalchbrenner, N., Kavukcuoglu, K. (2016). Pixel recurrent neural networks. arXiv preprint arXiv:1601.06759.

  40. Van Den Oord, A., Dieleman, S., Zen, H., Simonyan, K., Vinyals, O., Graves, A., Kalchbrenner, N., Senior, A., & Kavukcuoglu, K. (2016). Wavenet: A generative model for raw audio. CoRR abs/1609.03499.

    Google Scholar 

  41. Hyvärinen, A., & Pajunen, P. (1999). Nonlinear independent component analysis: Existence and uniqueness results. Neural Networks, 12(3), 429–439.

    Article  Google Scholar 

  42. Rezende, D. J, Mohamed, S., & Wierstra, D. (2014). Stochastic backpropagation and approximate inference in deep generative models. In ICML’2014. Preprint: arXiv:1401.4082.

  43. Vahdat, A., & Kautz, J. (2020). Nvae: A deep hierarchical variational autoencoder. arXiv preprint arXiv:2007.03898.

  44. Ackley, D. H., Hinton, G. E., & Sejnowski, T. J. (1985). A learning algorithm for boltzmann machines. Cognitive Science, 9(1), 147–169.

    Article  Google Scholar 

  45. Hinton, G. E. (1984). Distributed representations.

    Google Scholar 

  46. Hinton, G. E., & Sejnowski, T. J. (1986). Learning and relearning in boltzmann machines. Parallel Distributed Processing: Explorations in the Microstructure of Cognition, 1, 282–317.

    Google Scholar 

  47. Bengio, Y., Thibodeau-Laufer, E., Alain, G., & Yosinski, J. (2014). Deep generative stochastic networks trainable by backprop. In ICML’2014.

    Google Scholar 

  48. Dziugaite, G. K., Roy, D. M., Ghahramani, Z. (2015). Training generative neural networks via maximum mean discrepancy optimization. arXiv preprint arXiv:1505.03906.

  49. Li, H., Lin, Z., Shen, X., Brandt, J., & Hua, G. (2015). A convolutional neural network cascade for face detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 5325–5334).

    Google Scholar 

  50. Zeiler, M. D., & Fergus, R. (2014). Visualizing and understanding convolutional networks. In European Conference on Computer Vision (pp. 818–833). Cham: Springer.

    Google Scholar 

  51. Denton, E. L., Chintala, S., & Fergus, R. (2015). Deep generative image models using a laplacian pyramid of adversarial networks. In Advances in Neural Information Processing Systems (pp. 1486–1494).

    Google Scholar 

  52. Ioffe, S., & Szegedy, C. (2015). Batch normalization: Accelerating deep network training by reducing internal covariate shift.

    Google Scholar 

  53. Springenberg, J. T., Dosovitskiy, A., Brox, T., & Riedmiller, M. (2015). Striving for simplicity: The all convolutional net. In ICLR.

    Google Scholar 

  54. Zeiler, M. D., Krishnan, D., Taylor, G. W., & Fergus, R. (2010). Deconvolutional networks.

    Google Scholar 

  55. Malhotra, Y. (2018). Machine intelligence: AI, machine learning, deep learning & generative adversarial networks: model risk management in operationalizing machine learning for algorithm deployment.

    Google Scholar 

  56. Apruzzese, G., Colajanni, M., Ferretti, L., Guido, A., & Marchetti, M. (2018). On the effectiveness of machine and deep learning for cyber security. In 2018 10th International Conference on Cyber Conflict (CyCon). IEEE.

    Google Scholar 

  57. Biggio, B., & Roli, F. (2018). Wild patterns: Ten years after the rise of adversarial machine learning. Pattern Recognition, 84, 317–331.

    Article  Google Scholar 

  58. Lin, Z., Shi, Y., & Xue, Z. (2018). IDSGAN: Generative adversarial networks for attack generation against intrusion detection. arXiv preprint arXiv:1809.02077.

  59. Grosse, K., Papernot, N., Manoharan, P., Backes, M., McDaniel, P. (2017, September). Adversarial examples for malware detection. In European Symposium on Research in Computer Security (pp. 62–79). Cham: Springer.

    Google Scholar 

  60. Kim, J. Y., Bu, S. J., & Cho, S. B. (2018). Zero-day malware detection using transferred generative adversarial networks based on deep autoencoders. Information Sciences, 460, 83–102.

    Article  Google Scholar 

  61. Yin, C., Zhu, Y., Liu, S., Fei, J., & Zhang, H. (2018). An enhancing framework for botnet detection using generative adversarial networks. In 2018 International Conference on Artificial Intelligence and Big Data (ICAIBD). IEEE.

    Google Scholar 

  62. Higgins, I., Matthey, L., Pal, A., Burgess, C., Glorot, X., Botvinick, M., Mohamed, S., & Lerchner, A. (2016). Beta-vae: Learning basic visual concepts with a constrained variational framework.

    Google Scholar 

  63. Shi, H., Dong, J., Wang, W., Qian, Y., & Zhang, X. (2017). Ssgan: Secure steganography based on generative adversarial networks. In Pacific Rim Conference on Multimedia (pp. 534–544). Cham: Springer.

    Google Scholar 

  64. Tang, W., Tan, S., Li, B., & Huang, J. (2017). Automatic steganographic distortion learning using a generative adversarial network. IEEE Signal Processing Letters, 24(10), 1547–1551.

    Article  Google Scholar 

  65. Abadi, M., & Andersen, D. G. (2016). Learning to protect communications with adversarial neural cryptography. arXiv preprint arXiv:1610.06918.

  66. Zügner, D., Akbarnejad, A., & Günnemann, S. (2018). Adversarial attacks on neural networks for graph data. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (pp. 2847–2856). ACM.

    Google Scholar 

  67. Huang, C., Kairouz, P., Chen, X., Sankar, L., & Rajagopal, R. (2018). Generative adversarial privacy. arXiv preprint arXiv:1807.05306.

  68. Beaulieu-Jones, B. K., Wu, Z. S., Williams, C., Lee, R., Bhavnani, S. P., Byrd, J. B., & Greene, C. S. (2019). Privacy-preserving generative deep neural networks support clinical data sharing. Circulation: Cardiovascular Quality and Outcomes, 12(7), e005122.

    Google Scholar 

  69. Jordon, J., Yoon, J., & van der Schaar, M. (2018) PATE-GAN: Generating synthetic data with differential privacy guarantees. In International Conference on Learning Representations.

    Google Scholar 

  70. Kim, J. W., Moon, S. M., Kang, S. U., & Jang, B. (2020). Effective privacy-preserving collection of health data from a user’s wearable device. Applied Sciences, 10(18), 6396.

    Article  Google Scholar 

  71. Triastcyn, A., & Faltings, B. (2020). Generating higher-fidelity synthetic datasets with privacy guarantees. arXiv preprint arXiv:2003.00997.

  72. Xu, C., Ren, J., Zhang, D., Zhang, Y., Qin, Z., & Ren, K. (2019). GANobfuscator: Mitigating information leakage under GAN via differential privacy. IEEE Transactions on Information Forensics and Security, 14(9), 2358–2371.

    Article  Google Scholar 

  73. Bontrager, P., Togelius, J., & Memon, N., (2017). Deepmasterprint: Generating fingerprints for presentation attacks. https://arxiv.org/abs/1705.07386.

  74. Anderson, H. S., Woodbridge, J., & Filar, B. (2016). DeepDGA: adversarially-tuned domain generation and detection. In Proceedings of the 2016 ACM Workshop on Artificial Intelligence and Security (pp. 13–21). ACM.

    Google Scholar 

  75. Elsayed, G. F., Shankar, S., Cheung, B., Papernot, N., Kurakin, A., Goodfellow, I., & Sohl-Dickstein, J. (2018). Adversarial examples that fool both human and computer vision. arXiv preprint arXiv:1802.08195.

  76. Goodfellow, I. J., Shlens, J., & Szegedy, C. (2014). Explaining and harnessing adversarial examples. arXiv preprint arXiv:1412.6572.

  77. Kurakin, A., Goodfellow, I., & Bengio, S. (2016). Adversarial examples in the physical world. arXiv preprint arXiv:1607.02533.

  78. Hayes, J., Melis, L., Danezis, G., & De Cristofaro, E. (2019). LOGAN: Membership inference attacks against generative models. Proceedings on Privacy Enhancing Technologies, 1, 133–152.

    Article  Google Scholar 

  79. Kros, J., Fischer, I., & Song, D. (2018). Adversarial examples for generative models. In 2018 IEEE Security and Privacy Workshops (SPW) (pp. 36–42). IEEE.

    Google Scholar 

  80. CASIA, (2018). Notes on CASIA-FingerprintV5 (Online), http://biometrics.idealtest.org/dbDetailForUser.do?id=7. Accessed on 12 June 2018.

  81. Ko, K., (2007). User’s guide to NIST biometric image software (NBIS) (No. NIST Interagency/Internal Report (NISTIR)-7392).

    Google Scholar 

  82. ISO/IEC: ‘29794-1:2009. Information technology–Biometric sample quality–Part 1: Framework’. Tech. Rep., JTC 1/SC 37/WG 3, January 2016.

    Google Scholar 

  83. Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., & Desmaison, A. (2019). Pytorch: An imperative style, high-performance deep learning library. In Advances in Neural Information Processing Systems (pp. 8026–8037).

    Google Scholar 

  84. Theis, L., Oord, A. V. D., Bethge, M. (2015). A note on the evaluation of generative models. arXiv preprint arXiv:1511.01844.

  85. Tabassi, E., Wilson, C., & Watson, C. I., (2004). Fingerprint Image Qualitiy (No. NIST Interagency/Internal Report (NISTIR)-7151).

    Google Scholar 

  86. Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A., & Chen, X. (2016). Improved techniques for training gans. In Advances in Neural Information Processing Systems (pp. 2226–2234).

    Google Scholar 

  87. Arjovsky, M., Chintala, S., & Bottou, L. (2017). Wasserstein gan. arXiv preprint arXiv:1701.07875.

  88. Chen, X., Duan, Y., Houthooft, R., Schulman, J., Sutskever, I. & Abbeel, P. (2016). Infogan: Interpretable representation learning by information maximizing generative adversarial nets. In Advances in neural Information Processing Systems (pp. 2172–2180).

    Google Scholar 

  89. Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., & Courville, A. C. (2017). Improved training of wasserstein gans. In Advances in Neural Information Processing Systems (pp. 5767–5777).

    Google Scholar 

  90. Zhang, F., Xin, S., & Feng, J. (2019). Combining global and minutia deep features for partial high-resolution fingerprint matching. Pattern Recognition Letters, 119, 139–147.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chika Yinka-Banjo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ugot, OA., Yinka-Banjo, C., Misra, S. (2021). Biometric Fingerprint Generation Using Generative Adversarial Networks. In: Misra, S., Kumar Tyagi, A. (eds) Artificial Intelligence for Cyber Security: Methods, Issues and Possible Horizons or Opportunities. Studies in Computational Intelligence, vol 972. Springer, Cham. https://doi.org/10.1007/978-3-030-72236-4_3

Download citation

Publish with us

Policies and ethics