Skip to main content

Effect of Conventional and Ecological Dielectric on the Wire Electrical Discharge Machining WEDM Process on AISI-D3 Steel

  • Conference paper
  • First Online:
Recent Advances in Electrical Engineering, Electronics and Energy (CIT 2020)

Abstract

AISI-D3 steel is in high demand in the industry to manufacture special tools, dies and stamping tools. WEDM machining is an efficient alternative process for cutting steels that are difficult to machine by conventional processes. However, its parameters must be properly adjusted to achieve an adequate level of machining performance. This document analyzes the influence of a conventional and ecological dielectric on the cutting surface of an AISI-D3 steel workpiece under the controlled parameters of the WEDM process. A DOE was applied using a 24 full factorial design to evaluate the roughness and surface hardness HRC (response variables). The main factors and their significance that affects the response variables were identified through an experimental analysis and ANOVA. Applying SEM on the cut surface, the topography and diffusion caused by the cut were analyzed. The current, the feed rate and the dielectric are factors that affect the surface roughness, obtaining a minimum Ra of 3.86 µm. For HRC the significant factors were current and dielectric, where the ecological dielectric had a greater impact on surface hardness, consequently a benefit is obtained in steel wear.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bisaria, H., Shandilya, P.: Experimental investigation on wire electric discharge machining (WEDM) of Nimonic C-263 superalloy. Mater. Manuf. Process. 34(1), 83–92 (2019)

    Google Scholar 

  2. Molera Sola, P.: Electromecanizado, electroerosión y mecanizado electroquímico. Marcombo (1989)

    Google Scholar 

  3. Garg, R., Singh, K., Sachdeva, A., Sharma, V.S., Ojha, K., Singh, S.: Review of research work in sinking EDM and WEDM on metal matrix composite materials. Int. J. Adv. Manuf. Technol. 50(5–8), 611–624 (2010)

    Article  Google Scholar 

  4. Maity, K., Choubey, M.: A review on vibration-assisted EDM, micro-EDM and WEDM. Surf. Rev. Lett. 26(05), 1830008 (2019)

    Article  Google Scholar 

  5. Kalyon, A.: Fatatit, and Application. The Environmental Impact of Electric Discharge Machining 3(3),123–129

    Google Scholar 

  6. Leppert, T.: A review on ecological and health impacts of electro discharge machining (EDM). In: AIP Conference Proceedings, vol. 2017, no. 1, p. 020014. AIP Publishing LLC (2018)

    Google Scholar 

  7. Frei, C., Hirt, C., Girardin, R., Dauw, D.F.: A new approach for contamination measurements for EDM dielectrics. CIRP Annals 36(1), 111–113 (1987)x

    Google Scholar 

  8. Valaki, J.B., Rathod, P.P., Khatri, B.C.: Environmental impact, personnel health and operational safety aspects of electric discharge machining: a review. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 229(9), 1481–1491 (2015/2014)

    Google Scholar 

  9. Srinivas Viswanth, V., Ramanujam, R., Rajyalakshmi, G.: A review of research scope on sustainable and eco-friendly electrical discharge machining (E-EDM). Materials Today Proc. 5(5), Part 2, 12525–12533 (2018)

    Google Scholar 

  10. Liu, Y., Ji, R., Zhang, Y., Zhang, H.: Investigation of emulsion for die sinking EDM. Int. J. Adv. Manuf. Technol. 47(1–4), 403–409 (2010)

    Article  Google Scholar 

  11. Valaki, J.B., Rathod, P.P.: Investigating feasibility through performance analysis of green dielectrics for sustainable electric discharge machining. Mater. Manuf. Process. 31(4), 541–549 (2016)

    Google Scholar 

  12. Singh, S., Bhardwaj, M.: Characterization, and engineering, eeview to EDM by using water and powder-mixed dielectric fluid 10(02), 199 (2011)

    Google Scholar 

  13. Zhang, Y., Liu, Y., Ji, R., Cai, B., Shen, Y.: Sinking EDM in water-in-oil emulsion. Int. J. Adv. Manuf. Technol. 65(5), 705–716 (2013)

    Google Scholar 

  14. Kumar, V., Yadav, A.K., Singh, and Management. A review on current research trends in wire-electrical discharge machining (WEDM) 5(1), 103–112 (2016)

    Google Scholar 

  15. Klocke, F., Olivier, M., Degenhardt, U., Herrig, T., Tombul, U., Klink, A.: Investigation on wire-EDM finishing of titanium nitride doped silicon nitride in CH-based Dielectrics. Procedia CIRP 77, 650–653 (2018)

    Google Scholar 

  16. Mouralova, K., Kovar, J., Klakurkova, L., Bednar, J., Benes, L., Zahradnicek, R.: Analysis of surface morphology and topography of pure aluminium machined using WEDM. Measurement 114, 169–176 (2018)

    Article  Google Scholar 

  17. Choudhuri, B., Sen, R., Ghosh, S.K., Saha, S.: Modelling of surface roughness and tool consumption of WEDM and optimization of process parameters based on fuzzy-PSO. Mater. Today Proc. 5(2), 7505–7514 (2018)

    Article  Google Scholar 

  18. Majumder, H., Maity, K.: Prediction and optimization of surface roughness and micro-hardness using grnn and MOORA-fuzzy-a MCDM approach for nitinol in WEDM. Measurement 118, 1–3 (2018)

    Article  Google Scholar 

  19. Lodhi, B.K., Agarwal, S.: Optimization of machining parameters in WEDM of AISI D3 steel using Taguchi technique. Procedia CIRP 14, 194–199 (2014)

    Google Scholar 

  20. Garg, M.P., Kumar, A., Sahu, C.K.: Mathematical modeling and analysis of WEDM machining parameters of nickel-based super alloy using response surface methodology. Sādhanā 42(6), 981–1005 (2017)

    Google Scholar 

  21. Pérez Salinas, C.F., Moya, E., Coello, D.: Uso de un arreglo ortogonal para el análisis del proceso de electroerosión por penetración con electrodos de forma de grafito y cobre sobre micro-fundición de aluminio. Enfoque UTE 9(3), 67–79 (2018)

    Google Scholar 

  22. Singh, V.K., Singh, S.: Multi-objective optimization using Taguchi based Grey relational analysis for wire EDM of Inconel 625. J. Mater. Sci. Mech. Eng 2(11), 38–42 (2015)

    Google Scholar 

  23. Badii, M., Rodríguez, M.C., Wong, A., Villalpando, P.J.: Diseños experimentales e investigación científica 4(8) (2017)

    Google Scholar 

  24. Castaño, E., Domínguez, Q.: Diseño de experimentos: Estrategias y análisis en Ciencia y Tecnología (2016)

    Google Scholar 

  25. Kumar, R., Roy, S., Gunjan, P., Sahoo, A., Sarkar, D.D., Das, R.K.: Analysis of MRR and surface roughness in machining Ti-6Al-4V ELI titanium alloy using EDM process 20, 358–364 (2018)

    Google Scholar 

  26. Alavi, F., Jahan, M.P.: Optimization of process parameters in micro-EDM of Ti-6Al-4V based on full factorial design 92(1–4), 167–187 (2017)

    Google Scholar 

  27. Prabhu, S., Vinayagam, B.K.: Optimization of carbon nanotube based electrical discharge machining parameters using full factorial design and genetic algorithm 14(3), 161–173 (2016)

    Google Scholar 

  28. Pérez-Salinas, C., Nuñez, R.V., Maiza, O.A., Zamora, L.F., Zumbana, J.P.: Regression models for the front grinding process on Grey Cast Iron block-engine 27(3), 510–521 (2019)

    Google Scholar 

  29. FORD ESPAÑA, S.: NTP 317: Fluidos de corte: criterios de control de riesgos higiénicos

    Google Scholar 

  30. Somashekaraiah, R., Gnanadhas, D.P., Kailas, S.V., Chakravortty, D.J.T.O.: Eco-friendly, non-toxic cutting fluid for sustainable manufacturing and machining processes 11(5), 556–567 (2016)

    Google Scholar 

  31. Hastono Wijaya, F.G.: The effect of electric current and wire feed rate onWEDM towards the spur gear surface roughness. Int. J. Latest Eng. Res. Appl. (IJLERA) 02(05) (2017)

    Google Scholar 

  32. Han, F., Jiang, J., Yu, D.J.: Influence of machining parameters on surface roughness in finish cut of WEDM 34(5–6), 538–546 (2007)

    Google Scholar 

Download references

Acknowledgment

Thanks to the Technical University of Ambato, the Mechanical Engineering laboratory and the Steel Engineering company for their total support in carrying out this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristian Pérez-Salinas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pérez-Salinas, C., Molina-Molina, D., Ramirez-Gangotena, L. (2021). Effect of Conventional and Ecological Dielectric on the Wire Electrical Discharge Machining WEDM Process on AISI-D3 Steel. In: Botto Tobar, M., Cruz, H., Díaz Cadena, A. (eds) Recent Advances in Electrical Engineering, Electronics and Energy. CIT 2020. Lecture Notes in Electrical Engineering, vol 763. Springer, Cham. https://doi.org/10.1007/978-3-030-72212-8_3

Download citation

Publish with us

Policies and ethics