Skip to main content

Permeability Characterization of a Composite Reinforced Material with Fiberglass and Cabuya by VARTM Process. Case Hybrid Material

Part of the Lecture Notes in Electrical Engineering book series (LNEE,volume 763)


In this study, the influence of the use of synthetic and natural fiber in the characterization of permeability in composite materials was analyzed. The Vacuum Assisted Resin Transfer Process (VARTM) was applied to glass fiber samples Chopped Strand Mat and Fourcroia mercadilla, known as “cabuya”, to observe the advance of the epoxy resin flow front IN2. Additionally, a sandwich-type hybrid reinforcement with the aforementioned fibers was used and its incidence on the permeability of the compound was measured. The cabuya fiber achieves a reduction of 4. 38% at infusion time compared to fiberglass. In addition, the use of cabuya natural fiber within the compound decreases the infusion time in 7.40% with respect to the 12.14% presented by fiberglass. To determine the permeability of the different fibers, the experimental procedure was used through Darcy’s Law. The calculated permeability was; 7.3628 × 10−11 m2, 8.5765 × 10−11 m2, 1.0065 × 10−10 m2 for fiberglass, woven cabuya and hybrid material respectively.


  • Hybrid compounds
  • Hybrid material
  • Resin flow
  • Porosity
  • Fiber
  • Characterization

This is a preview of subscription content, access via your institution.

Buying options

USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-72212-8_2
  • Chapter length: 15 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
USD   229.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-72212-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   299.99
Price excludes VAT (USA)
Hardcover Book
USD   299.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.



Fiber Reforced Composite Polymers


Liquid Composite Molding


Vacuum Assisted Resin Transfer Molding


  1. Yingguang Li, Q.C.: Composite Structures. Compos. Struct. 212(3), 83–93 (2012).

    CrossRef  Google Scholar 

  2. Nabil Bouhfid, M.R.-O.: Modelling of Damage Processes in Biocomposites. Fibre-Reinforced Composites and Hybrid Composites, vol. 5 (2019).

  3. Margarethe Hofmann, A.H.: Critical raw materials: a perspective from the materials science community. Sustain. Mater. Technol. 17(9), e00074 (2018).

    CrossRef  Google Scholar 

  4. Li, Y.X.L.: Permeability and mechanical properties of plant fiber reinforced hybrid. Mater. Des. 86(5), 313–320 (2015).

  5. Alen Thomas, P.K.: A review on transition in the manufacturing of mechanical components from conventional techniques to rapid casting using rapid prototyping. Materials today Proc. 5(5), 11990–12002 (2018).

  6. Park, J., Lee, H., Lee, S., Kyung, Y., Kim, J.H., Lee, K., Paik, K.-W.: Fabrication and characterization of epoxy molding films (EMFs) for wafer-level and panel-level fan out packages. In: 2018 IEEE 68th Electronic Components and Technology Conference (ECTC), vol. 8, pp. 712–717 (2018).

  7. Lai Jiang, D.W.: Bioresin infused then cured mycelium-based sandwich-structure biocomposites: Resin transfer molding (RTM) process, flexural properties, and simulation. J. Clean. Prod. 207(1), 123–135 (2019).

    CrossRef  Google Scholar 

  8. James, M.: Production of a class 8 truck trailer bed using c-PBT thermoplastic prepreg & vacuum bag processing. In: 2010, 10th Annual Automotive Composites Conference and Exhibition 2010 (pág. 595), Michigan (2010).

  9. Milad Tajdini, M.H.: An experimental investigation on effect of adding natural and synthetic fibres on mechanical and behavioural parameters of soil-cement materials. Int. J. Civ. Eng. 16(4), 353–370 (2018).

    CrossRef  Google Scholar 

  10. Wafa Ouarhim, N.Z.: Mechanical and Physical Testing of Biocomposites, Fibre-Reinforced Composites and Hybrid Composites. En W. P. Engineering, 3 - Mechanical performance of natural fibers–based thermosetting composites, pp. 43–60 (2019).

  11. ASTM International. Standard Test Method for Tensile Properties of Plastics, vol. 08.01, Conshohocken (2014).

  12. Carmen, R.R.: Novel ABS-based binary and ternary polymer blends for material extrusion 3D printing. Mater. Sci. Addit. Manuf. 29(17), 1859–1866 (2014).

  13. Kao, C.-T., Lin, C.-C., Chen, Y.-W., Yeh, C.-H., Fang, H.-Y., Shie, M.-Y.: Poly(dopamine) coating of 3D printed poly(lactic acid) scaffolds for bone tissue engineering. Mater. Sci. Eng. C 56, 165–173 (2015).

  14. Christian Lubombo, M.H.: Effect of infill patterns on the mechanical performance of lightweight 3D-printed cellular PLA parts. MaterialsToday COMMUNICATIONS (2018, in Press).

  15. Christian Polzin, S.S.: Characterization and evaluation of a PMMA-based 3D printing process. Rapid Prototyp. J. 19, 37–43 (2013).

    CrossRef  Google Scholar 

  16. Verleye, S.L.B.: Modelling of the permeability of non-crimp fabrics for composites. En W. P. Engineering, Non-Crimp Fabric Composites, Manufacturing, Properties and Applications, 260e, 242–259 (2011)

    Google Scholar 

  17. Mahsa Nouraddini, M.E.: Development and characterization of edible films based on eggplant flour and corn starch. . Int. J. Biol. Macromol. 120 Part B(12), 1639–1645 (2018).

  18. Dominik Bendera, J.S.: Flow rate control during vacuum-assisted resin transfer molding (VARTM) processing. Compos. Sci. Technol. 66(13), 2265–2271 (2006).

    CrossRef  Google Scholar 

  19. Verrey, J.: Dynamic capillary effects in liquid composite moulding with non-crimp fabrics. Compos. Part A Appl. Sci. Manuf. 37(1), 92–102 (2006).

    CrossRef  Google Scholar 

  20. Christopher, L., Benson, G.T.: Is There a Moore’s Law for 3D Printing? 3D Printing and Additive Manufacturing, 5(1) (2018).

  21. Cortés, C.S.: Rapid casting and new technologies in investment casting. Ingeniería e Investigación 26 (2006)

    Google Scholar 

  22. DS Ponce, V.G.: Propiedade Mecánicas de compuestos biodegradables elaborados a base de ácido poliláctico reforzado con fibras de abacá’. Revista EPN 33(2) (2014)

    Google Scholar 

  23. Edgar Torres, J.L.: Sistema de posicionamiento aplicado a la técnica de impresión 3D modelado por deposición fundida. Revista de Investigación, Desarrollo e Innovación RIDI 3(1) (2012)

    Google Scholar 

  24. Yahya Taşgın, N.K.: Production of Kevlar-Carbon-Aramid Composite Materials by using Vacuum Assisted Resin Infusion Molding Method. Ciencia e Tecnica Vitivinicola 33(2), 13–24 (2018)

    Google Scholar 

  25. Dinny Harnany, I.M.: The effect of sisal fiber content in the biocomposite product from injection molding process on its mechanical properties. AIP Conf. Proc. 1, 1983 (2018).

    CrossRef  Google Scholar 

  26. Truong, G.T., Son, M.-K., Choi, K.-K.: Strength and durability characteristics of latex-modified jute/macro-synthetic hybrid fibre-reinforced concrete. J. Adv. Concr. Technol. 17(2), 79–92 (2019).

  27. Lee, Y.J.: A prediction method on in‐plane permeability of mat/roving fibers laminates in vacuum assisted resin transfer molding. Polymer Compos. 27(6), 665–670 (2015).

  28. Fressoli , M.: Impresiones 3D y fabricación digital: una nueva revolución tecnológica? Integr. Trade J. 39, 116–129 (2016)

    Google Scholar 

  29. Garima Mittal, K.Y.-S.: Reinforcements in multi-scale polymer composites: processing, properties, and applications. Compos. Part B Eng. 138(4), 122–139 (2018).

    CrossRef  Google Scholar 

  30. León-Cabezas, M.A., Martínez-García, A., Varela-Gandía, F.J.: Innovative functionalized monofilaments for 3D printing using fused deposition modeling for the toy industry. Procedia Manuf. 13, 738–745

  31. Liliana Serna, C., de Aída Rodríguez, S., Fred Albán, A.: Ácido Poliláctico (PLA): Propiedades y Aplicaciones. Ingeniería y Competitividad 5(1), 16–26 (2011).

  32. Malvika Nagratha, A.S.: Functionalized prosthetic interfaces using 3D printing: generating infection-neutralizing prosthesis in dentistry. Materialstoday Commun. 15, 114–119 (2018).

    CrossRef  Google Scholar 

  33. Naik, N.K., Sirisha, M., Inani, A.: Permeability characterization of polymer matrix composites by RTM/VARTM. Progress Aerosp. Sci. 65(2), 22–40 (2014).

  34. Nguyen, A.K., Narayan, R.J., Shafiee, A.: 3D Printing in the Biomedical Field. Encycl. Biomed. Eng. 275–280 (2018).

  35. Jagannathan Sundrababu, P.G.: Characterization and evaluation of mechanical properties of biodegradable reinforced composites material. Materials Today Proc. 5 (6(Part 2)), 14458–14467 (2018).

  36. Ali, M.A., Umer, R.: In-plane virtual permeability characterization of 3D woven fabrics using a hybrid experimental and numerical approach. Compos. Sci. Technol. 173(3), 99–109 (2019).

  37. Comas-Cardona, S., Zhang, F.: Fiber reinforcements: correlating permeability and local spatial fibrous features. In: 18th International Conference on Composite Materials, Th46-5. Obtenido de (2011).

  38. Endruweit, A., Long, L.A.: Analysis of compressibility and permeability of selected 3D woven reinforcements. Sage J. Compos. Mater. 44(24), 2833–2862 (2010)

    Google Scholar 

  39. Mathilde Berchon, B.L.: La impresión 3D. Guía definitiva para makers, diseñadores, estudiantes, profesionales, artistas y manitas en general. Editorial Gustavo Gili, España (2016)

    Google Scholar 

  40. Araya-Calvo, M., López-Gómez, I., Chamberlain-Simon, N., León-Salazar, J.L., Guillén-Girón, T., Corrales-Cordero, J.S., Sánchez-Brenes, O.: Evaluation of compressive and flexural properties of continuous fiber fabrication additive manufacturing technology. Addit. Manuf. 22, 157–164

  41. Xavier Punet, R.L.-T.: Polylactic acid organogel as versatile scaffolding technique. Polymer 113, 81–91 (2017).

    CrossRef  Google Scholar 

  42. Sui, X., Xie, X.M.: Creating super-tough and strong PA6/ABS blends using multi-phase compatibilizers. Chinese Chem. Lett. (2018). Chinese Chem. Lett.

  43. CarosenaMeola, S.B.: Characterization of PLA/jute composites with infrared thermography. Conference: Frontiers on polymer science, 165–73 (2015).

  44. Jin Zhu, J.Z.: Compatibilizer assistant SCF/ABS composites with improved mechanical properties prepared by fused deposition modeling. Polymer-Plast. Technol. Eng. 57(15), 1576–1584 (2017).

    CrossRef  Google Scholar 

  45. Rasero, M.A., Garcia, F.P., Amoros, J.E., Vidal, R.N.: Thermoplastic elastomer addition for recovering recycled plastics. Mechanical and Thermal Characterization. DYNA Ingeneiría e Industria, 87, 526–532 (2012).

  46. Molina-Osejos, J.V., Ayabaca-Sarria, C., Peralta-Zurita, D.B., Gomez-Rosero, S., Moreno-Jimenez, G.A.: Mechanical capabilities of semi-rigid thermoplastics ABS and PLA from 3D printing. Int. J. Mater. Prod. Technol. 59(3), 253–269 (2019)

    CrossRef  Google Scholar 

  47. Qian Yan, H.D.: A review of 3D printing technology for medical applications. Engineering (2018).

  48. Rupinder Singh, H.S.: On the additive manufacturing of an energy storage device from recycled material. Compos. Part B Eng. 156, 259–265 (2018).

    CrossRef  Google Scholar 

  49. Soo-JinPark, F.-L.J.: Thermal properties of epoxy resin/filler hybrid composites. Polym. Degrad. Stab. 97(11), 2148–2153 (2012).

    CrossRef  Google Scholar 

  50. Zenghao Zhu, Q.W.: On the examination of the Darcy permeability of soft fibrous porous media; new correlations. Chem. Eng. Sci. 173(12), 525–536 (2017).

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Diana Belén Peralta-Zurita .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Peralta-Zurita, D.B., Jimenez-Pereira, D., Molina-Osejos, J.V., Moreno-Jiménez, G.A. (2021). Permeability Characterization of a Composite Reinforced Material with Fiberglass and Cabuya by VARTM Process. Case Hybrid Material. In: Botto Tobar, M., Cruz, H., Díaz Cadena, A. (eds) Recent Advances in Electrical Engineering, Electronics and Energy. CIT 2020. Lecture Notes in Electrical Engineering, vol 763. Springer, Cham.

Download citation