Cheung, S., Das, R., Mo, J.: Demystifying Numerical Models Step-by Step Modeling of Engineering Systems. Butterworth Heinemann (2019)
Google Scholar
Cárdenas, C., Sandoval, C., Gómez, J.: Implementación de una mesa vibratoria triaxial neumática para el análisis de estructuras y el movimiento sísmico, Rev. Colomb. Tecnol. Av. RCTA, vol. 2, no. 32, Art. no. 32, November 2018. https://doi.org/10.24054/16927257.v32.n32.2018.3032
Blanco-Ortega, A., Beltrán-Carbajal, F., Silva-Navarro, G., Méndez-Azúa, H.: Control de vibraciones en maquinaria rotatoria, Rev. Iberoam. Automática E Informática Ind. RIAI, vol. 7, no. 4, Art. no. 4, October 2010. https://doi.org/10.1016/s1697-7912(10)70058-3
Romero-Tarazona, B.E., Rodriguez-Sandoval, C.L., Villabonai-Ascanio, J.G., Rincón-Quintero, A.D.: Development of an artificial vision system that allows non-destructive testing on flat concrete slabs for surface crack detection by processing of digital images in MATLAB. In: IOP Conference Series Material Science Engineering, vol. 844, p. 012058, June 2020. https://doi.org/10.1088/1757-899x/844/1/012058
Nakamura, T., et al.: Flow-Induced Vibrations, 2nd Edition. Academic Press (2013)
Google Scholar
Tarazona, B., Sandoval, C.: Evaluación de discontinuidades tipo grietas y fisuras en estructuras de hormigón empleando un analizador de vibraciones y procesamiento digital de imágenes. In: Entre Cienc. E Ing., vol. 13, p. 85, June 2019. https://doi.org/10.31908/19098367.4018
Armijos, L., José, F.: Señales acústicas y de vibración: estudio comparativo para la detección de severidad de fallos en engranes rectos, p. 134 (2019)
Google Scholar
González, H.Á., Cardona, J. F., Monroy, G.A.: Diseño de un banco de pruebas de desalineamiento y desbalanceo mecanico. Sci. Tech., vol. 2, no. 28, Art. no. 28, ene. (2005). https://doi.org/10.22517/23447214.6827
Olarte, W., Botero Arbeláez, C.M., Cañon Zabaleta, B.: Técnicas de mantenimiento predictivo utilizadas en la industria. Sci. Tech., vol. 2, no. 45, Art. no. 45, ago. (2010). https://doi.org/10.22517/23447214.355
Bauer, B., Geropp, B., Seeliger, A.: Condition monitoring and predictive maintenance in mining industry using vibration analysis for diagnosis of gear boxes. IFAC Proceedings, vol. 30, no. 18, Art. no. 18, ago. (1997). https://doi.org/10.1016/s1474-6670(17)42529-8
Orhan, S., Akturk, N., Celik, V.: Vibration monitoring for defect diagnosis of rolling element - Technische Informationsbibliothek (TIB), vol. 39, no. 4, pp. 293–298 (2006)
Google Scholar
Hurtado, J.E.R.: Analisis de vibraciones en equipos criticos de la industria azucarera trabajo de graduacion preparado para la facultad de ingenieria y arquitectura ingeniero mecanico, May 2020, Accedido: May 28, 2020. Disponible en. https://www.academia.edu/33077038/analisis_de_vibraciones_en_equipos_criticos_de_la_industria_azucarera_trabajo_de_graduacion_preparado_para_la_facultad_de_ingenieria_y_arquitectura_ingeniero_mecanico
White, G.: Introduccion-al-analisis-de-vibraciones-azima-dli.pdf, DLI. AZIMA DLI (2010)
Google Scholar
Sanhueza, F.A.: Lozano, R.A., Duran, R.: Duran_Rivas_Ricardo.pdf, Pregrado, Universidad del Bio-Bio (2014)
Google Scholar
Palomino Marin, E., La Medición, E., Análisis, D.: Vibraciones en el Diagnóstico de Máquinas Rotatorias, Cuba (1997)
Google Scholar
Mosquera, G.: Las Vibraciones Mecanicas y Su Aplicacion Al Mantenimiento Predictivo, p. 205 (2018)
Google Scholar
Alguindigue, I.E., Loskiewicz-Buczak, R.E., Uhrig, A.: Monitoring and diagnosis of rolling element bearings using artificial neural networks. IEEE Trans. Ind. Electron., 40(2), 2 (1993). https://doi.org/10.1109/41.222642
Sandoval Rodríguez, C.L., Barros, A., Herreño, S.: Clasificación automática de patrones de vibraciones mecánicas en maquinaria rotativa afectada por desbalanceo. INGEUAN - Tend. En Ing., vol. 4, no. 7, Art no. 7, October 2013. Accedido: jul. 26, 2020. [En línea]. Disponible en: http://csifesvr.uan.edu.co/index.php/ingeuan/article/view/255
Neale, M.: The Tribology Handbook, 2nd Edition (1995)
Google Scholar
Pantelić, M., Jovančić, P., Ristić, L., Bebić, M.: Concrete base influence on the increased vibrations level of the mill drive system elements - a case study. Eng. Fail. Anal., 106, 104178 (2019). https://doi.org/10.1016/j.engfailanal.2019.104178
George, M., Balaji, J., Sajan, D., Dominic, P., Philip, R., Vinitha, G.: Synthesis and third order optical nonlinearity studies of toluidine tartrate single crystal supported by photophysical characterization and vibrational spectral analysis. J. Photochem. Photobiol. Chem., 393, 112413 (2020). https://doi.org/10.1016/j.jphotochem.2020.112413
Hashemnia, K., Pourandi, S.: Study the effect of vibration frequency and amplitude on the quality of fluidization of a vibrated granular flow using discrete element method. Powder Technol., 327, 335–345, March 2018. https://doi.org/10.1016/j.powtec.2017.12.097
Li, Z., He, Z., Zi, Y., Chen, X.: Bearing condition monitoring based on shock pulse method and improved redundant lifting scheme, vol. 79, no. 3, Art. no. 3 (2008). https://doi.org/10.1016/j.matcom.2007.12.004
de la Rosa, J.J.G., Agüera Pérez, A., Palomares Salas, J.C., Sierra Fernández, J.M.: A novel measurement method for transient detection based in wavelets entropy and the spectral kurtosis: an application to vibrations and acoustic emission signals from termite activity, Measurement, 68, 58–69, May 2015. https://doi.org/10.1016/j.measurement.2015.02.044
Fan, G., Li, J., Hao, H.: Vibration signal denoising for structural health monitoring by residual convolutional neural networks. Measurement, 157, 107651, June 2020. https://doi.org/10.1016/j.measurement.2020.107651
Randall, R.B.: A history of cepstrum analysis and its application to mechanical problems. Mech. Syst. Signal Process. 97, pp. 3–19 (2017). https://doi.org/10.1016/j.ymssp.2016.12.026
Shi, D., He, D., Wang, Q., Ma, C., Shu, H.: Free vibration analysis of closed moderately thick cross-ply composite laminated cylindrical shell with arbitrary boundary conditions. Materials, 13(4), 4 (2020). https://doi.org/10.3390/ma13040884
Sandoval Rodriguez, C.L.S., Tarazona, B.E., Arias, C.G.C., Javier Gonzalo Ascanio, V., Jhon Jairo Valencia, N.: Detection of structural alterations in metal bodies: an approximation using Fourier transform and principal component analysis (PCA), Sci. Tech., vol. 25, no. 2, Art. no. 2, June 2020. https://doi.org/10.22517/23447214.23501
Liu, Z., Zhang, L., Carrasco, J.: Vibration analysis for large-scale wind turbine blade bearing fault detection with an empirical wavelet thresholding method. Renew. Energy, 46, 99–110 (2020). https://doi.org/10.1016/j.renene.2019.06.094
Sandoval-Rodriguez, C.L., Villabona, J.G.A., Cárdenas-Arias, C.G., Rincon-Quintero, A.D., Tarazona-Romero, B.E.: Characterization of the mechanical vibration signals associated with unbalance and misalignment in rotating machines, using the cepstrum transformation and the principal component analysis. In: IOP Conference Series Material Science Engineering, vol. 844, p. 012057, June 2020. https://doi.org/10.1088/1757-899x/844/1/012057
Sandoval Rodríguez, C.L., Cardenas, C.G.C., Rincón-Quintero, A.D., Zanguña, J.A.: Extracción de rangos característicos a las condiciones de desbalanceo y desalineación en máquinas rotativas a partir de coeficientes cepstrum. presentado en V Convención internacional de la ingenieria en Cuba, Cuba, 2018, [En línea]. Disponible en: http://repositorio.uts.edu.co:8080/xmlui/bitstream/handle/123456789/887/Certificado%20Ponente.pdf?sequence=1&isAllowed=y