Skip to main content

Descriptive Study of a Rotary Machine Affected by Misalignment and Imbalance Applying the Wavelet Transform

Part of the Lecture Notes in Electrical Engineering book series (LNEE,volume 763)


The study of the effects produced by both, imbalance and misalignment in rotating machines, allow identifying the effects produced by these two phenomena under normal operating conditions of the equipment. Initially, an analysis is carried out using the wavelet transform, through the application of the LabVIEW and Matlab software; the goal was to compare these results with those obtained with the application of the Fourier transform. Additionally, a subsequent comparison of the results is carried out as a consequence of an initial comparison with an antecedent, where the Cepstrum-Fourier transformer and the Wavelet transform were applied to verify the existence of faults in a rotating machine. The present work is developed in order to determine which of these two studies represent these effects of misalignment and imbalance in a clear, specific, and/or significant way.


  • Wavelet
  • Vibrations
  • Algorithm
  • Misalignment
  • Measurement and unbalance

This is a preview of subscription content, access via your institution.

Buying options

USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-72212-8_17
  • Chapter length: 17 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
USD   229.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-72212-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   299.99
Price excludes VAT (USA)
Hardcover Book
USD   299.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.


  1. Cheung, S., Das, R., Mo, J.: Demystifying Numerical Models Step-by Step Modeling of Engineering Systems. Butterworth Heinemann (2019)

    Google Scholar 

  2. Cárdenas, C., Sandoval, C., Gómez, J.: Implementación de una mesa vibratoria triaxial neumática para el análisis de estructuras y el movimiento sísmico, Rev. Colomb. Tecnol. Av. RCTA, vol. 2, no. 32, Art. no. 32, November 2018.

  3. Blanco-Ortega, A., Beltrán-Carbajal, F., Silva-Navarro, G., Méndez-Azúa, H.: Control de vibraciones en maquinaria rotatoria, Rev. Iberoam. Automática E Informática Ind. RIAI, vol. 7, no. 4, Art. no. 4, October 2010.

  4. Romero-Tarazona, B.E., Rodriguez-Sandoval, C.L., Villabonai-Ascanio, J.G., Rincón-Quintero, A.D.: Development of an artificial vision system that allows non-destructive testing on flat concrete slabs for surface crack detection by processing of digital images in MATLAB. In: IOP Conference Series Material Science Engineering, vol. 844, p. 012058, June 2020.

  5. Nakamura, T., et al.: Flow-Induced Vibrations, 2nd Edition. Academic Press (2013)

    Google Scholar 

  6. Tarazona, B., Sandoval, C.: Evaluación de discontinuidades tipo grietas y fisuras en estructuras de hormigón empleando un analizador de vibraciones y procesamiento digital de imágenes. In: Entre Cienc. E Ing., vol. 13, p. 85, June 2019.

  7. Armijos, L., José, F.: Señales acústicas y de vibración: estudio comparativo para la detección de severidad de fallos en engranes rectos, p. 134 (2019)

    Google Scholar 

  8. González, H.Á., Cardona, J. F., Monroy, G.A.: Diseño de un banco de pruebas de desalineamiento y desbalanceo mecanico. Sci. Tech., vol. 2, no. 28, Art. no. 28, ene. (2005).

  9. Olarte, W., Botero Arbeláez, C.M., Cañon Zabaleta, B.: Técnicas de mantenimiento predictivo utilizadas en la industria. Sci. Tech., vol. 2, no. 45, Art. no. 45, ago. (2010).

  10. Bauer, B., Geropp, B., Seeliger, A.: Condition monitoring and predictive maintenance in mining industry using vibration analysis for diagnosis of gear boxes. IFAC Proceedings, vol. 30, no. 18, Art. no. 18, ago. (1997).

  11. Orhan, S., Akturk, N., Celik, V.: Vibration monitoring for defect diagnosis of rolling element - Technische Informationsbibliothek (TIB), vol. 39, no. 4, pp. 293–298 (2006)

    Google Scholar 

  12. Hurtado, J.E.R.: Analisis de vibraciones en equipos criticos de la industria azucarera trabajo de graduacion preparado para la facultad de ingenieria y arquitectura ingeniero mecanico, May 2020, Accedido: May 28, 2020. Disponible en.

  13. White, G.: Introduccion-al-analisis-de-vibraciones-azima-dli.pdf, DLI. AZIMA DLI (2010)

    Google Scholar 

  14. Sanhueza, F.A.: Lozano, R.A., Duran, R.: Duran_Rivas_Ricardo.pdf, Pregrado, Universidad del Bio-Bio (2014)

    Google Scholar 

  15. Palomino Marin, E., La Medición, E., Análisis, D.: Vibraciones en el Diagnóstico de Máquinas Rotatorias, Cuba (1997)

    Google Scholar 

  16. Mosquera, G.: Las Vibraciones Mecanicas y Su Aplicacion Al Mantenimiento Predictivo, p. 205 (2018)

    Google Scholar 

  17. Alguindigue, I.E., Loskiewicz-Buczak, R.E., Uhrig, A.: Monitoring and diagnosis of rolling element bearings using artificial neural networks. IEEE Trans. Ind. Electron., 40(2), 2 (1993).

  18. Sandoval Rodríguez, C.L., Barros, A., Herreño, S.: Clasificación automática de patrones de vibraciones mecánicas en maquinaria rotativa afectada por desbalanceo. INGEUAN - Tend. En Ing., vol. 4, no. 7, Art no. 7, October 2013. Accedido: jul. 26, 2020. [En línea]. Disponible en:

  19. Neale, M.: The Tribology Handbook, 2nd Edition (1995)

    Google Scholar 

  20. Pantelić, M., Jovančić, P., Ristić, L., Bebić, M.: Concrete base influence on the increased vibrations level of the mill drive system elements - a case study. Eng. Fail. Anal., 106, 104178 (2019).

  21. George, M., Balaji, J., Sajan, D., Dominic, P., Philip, R., Vinitha, G.: Synthesis and third order optical nonlinearity studies of toluidine tartrate single crystal supported by photophysical characterization and vibrational spectral analysis. J. Photochem. Photobiol. Chem., 393, 112413 (2020).

  22. Hashemnia, K., Pourandi, S.: Study the effect of vibration frequency and amplitude on the quality of fluidization of a vibrated granular flow using discrete element method. Powder Technol., 327, 335–345, March 2018.

  23. Li, Z., He, Z., Zi, Y., Chen, X.: Bearing condition monitoring based on shock pulse method and improved redundant lifting scheme, vol. 79, no. 3, Art. no. 3 (2008).

  24. de la Rosa, J.J.G., Agüera Pérez, A., Palomares Salas, J.C., Sierra Fernández, J.M.: A novel measurement method for transient detection based in wavelets entropy and the spectral kurtosis: an application to vibrations and acoustic emission signals from termite activity, Measurement, 68, 58–69, May 2015.

  25. Fan, G., Li, J., Hao, H.: Vibration signal denoising for structural health monitoring by residual convolutional neural networks. Measurement, 157, 107651, June 2020.

  26. Randall, R.B.: A history of cepstrum analysis and its application to mechanical problems. Mech. Syst. Signal Process. 97, pp. 3–19 (2017).

  27. Shi, D., He, D., Wang, Q., Ma, C., Shu, H.: Free vibration analysis of closed moderately thick cross-ply composite laminated cylindrical shell with arbitrary boundary conditions. Materials, 13(4), 4 (2020).

  28. Sandoval Rodriguez, C.L.S., Tarazona, B.E., Arias, C.G.C., Javier Gonzalo Ascanio, V., Jhon Jairo Valencia, N.: Detection of structural alterations in metal bodies: an approximation using Fourier transform and principal component analysis (PCA), Sci. Tech., vol. 25, no. 2, Art. no. 2, June 2020.

  29. Liu, Z., Zhang, L., Carrasco, J.: Vibration analysis for large-scale wind turbine blade bearing fault detection with an empirical wavelet thresholding method. Renew. Energy, 46, 99–110 (2020).

  30. Sandoval-Rodriguez, C.L., Villabona, J.G.A., Cárdenas-Arias, C.G., Rincon-Quintero, A.D., Tarazona-Romero, B.E.: Characterization of the mechanical vibration signals associated with unbalance and misalignment in rotating machines, using the cepstrum transformation and the principal component analysis. In: IOP Conference Series Material Science Engineering, vol. 844, p. 012057, June 2020.

  31. Sandoval Rodríguez, C.L., Cardenas, C.G.C., Rincón-Quintero, A.D., Zanguña, J.A.: Extracción de rangos característicos a las condiciones de desbalanceo y desalineación en máquinas rotativas a partir de coeficientes cepstrum. presentado en V Convención internacional de la ingenieria en Cuba, Cuba, 2018, [En línea]. Disponible en:

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Camilo Leonardo Sandoval-Rodriguez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Sandoval-Rodriguez, C.L., Tarazona-Romero, B.E., Lengerke-Perez, O., Cárdenas-Arias, C.G., Dulcey Diaz, D.C., Acosta Cárdenas, O.A. (2021). Descriptive Study of a Rotary Machine Affected by Misalignment and Imbalance Applying the Wavelet Transform. In: Botto Tobar, M., Cruz, H., Díaz Cadena, A. (eds) Recent Advances in Electrical Engineering, Electronics and Energy. CIT 2020. Lecture Notes in Electrical Engineering, vol 763. Springer, Cham.

Download citation