Skip to main content

Analysis of the Energy Potential of a Tangential Microturbine for Application in a Passivhaus Environment

Part of the Lecture Notes in Electrical Engineering book series (LNEE,volume 763)

Abstract

In this document, an analysis was made of the energy potential of the flow of water in pipes, of an innovative prototype for a building certified with the standard Passivhaus (PH). Passive interventions are based on insulation through the housing envelope and implementing technologies according to criteria and principles of the standard, thus increasing their energy efficiency [1], however, in most of the projects carried out, the concept of “zero energy building”, with energy savings of approximately 80% [2], therefore, the need arises to improve energy performance, through the use of tangential micro turbines with low pressure drop, constituting a model on a small scale for the study of electric generation thereof, establishing operating parameters similar to a hydraulic system for the distribution of residential drinking water. In order to take advantage of electrical energy, which is obtained by transferring flow through a micro turbine, increasing the percentage of performance in passive construction.

Keywords

  • Passivhaus standard
  • Efficiency
  • Generation
  • Hydraulic system
  • Microturbine

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-72212-8_14
  • Chapter length: 15 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   229.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-72212-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   299.99
Price excludes VAT (USA)
Hardcover Book
USD   299.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

References

  1. Sierra-Pérez, J., Rodríguez-Soria, B., Boschmonart-Rives, J., Gabarrell, X.: Integrated life cycle assessment and thermodynamic simulation of a public building’s envelope renovation: conventional vs. passivhaus proposal. Appl. Energy 212, 1510–1521 (2018). https://doi.org/10.1016/j.apenergy.2017.12.101

    CrossRef  Google Scholar 

  2. TOBIAS HATT: EL ESTÁNDAR ‘PASSIVHAUS’ EN EL CENTRO-SUR DE CHILE. UN ESTUDIO PARÁMETRICO MULTIFACTORIAL. TESIS DOCTORAL CONCEPCIÓN (2012)

    Google Scholar 

  3. International Energy Agency IEA: Hacia un modelo de edificio energía cero interconectado a la red. En: Encuentro internacional Ekotectura. Towar. net zero energy Sol. Build., pp. 27–29 (2012)

    Google Scholar 

  4. O’Kelly, M., Walter, M.E., Rowland, J.R.: Simulated hygrothermal performance of a Passivhaus in a mixed humid climate under dynamic load. Energy Build. 81, 211–218 (2014). https://doi.org/10.1016/j.enbuild.2014.06.015

    CrossRef  Google Scholar 

  5. Zhao, D., McCoy, A.P., Du, J., Agee, P., Lu, Y.: Interaction effects of building technology and resident behavior on energy consumption in residential buildings. Energy Build. 134, 223–233 (2017). https://doi.org/10.1016/j.enbuild.2016.10.049

    CrossRef  Google Scholar 

  6. CORPORACIÓN AUTÓNOMA REGIONAL DEL TOLIMA: Principales Convenios Internacionales En Materia Ambiental (2018). https://www.cortolima.gov.co/principales-convenios-internacionales-materia-ambiental

  7. European Commission: Energy efficiency directive 2012/27/EU (2012)

    Google Scholar 

  8. Directive 2010/31/EU of the European parliament and of the council: Directive 2010/31/EU of the European parliament and of the council of 19 May 2010 on the energy performance of buildings (2010)

    Google Scholar 

  9. Finkbeiner, M., Schau, E.M., Lehmann, A., Traverso, M.: Towards life cycle sustainability assessment. Sustainability 2(10), 3309–3322 (2010). https://doi.org/10.3390/su2103309

    CrossRef  Google Scholar 

  10. Feist, W., Peper, S., Görg, M.: CEPHEUS-Project information No. 36 (2001). www.passiv.de. Accessed 11 Oct 2020

  11. Creutzfeldt, B., Güntner, A., Thoss, H., Merz, B., Wziontek, H.: Measuring the effect of local water storage changes on in situ gravity observations: case study of the geodetic observatory wettzell, Germany. Water Resour. Res. 46(8) (2010). https://doi.org/10.1029/2009WR008359

  12. Yahyaoui, I., Tina, G., Chaabene, M., Tadeo, F.: Design and evaluation of a renewable water pumping system. IFAC-PapersOnLine 48(30), 462–467 (2015). https://doi.org/10.1016/j.ifacol.2015.12.422

    CrossRef  Google Scholar 

  13. Rashid, M.H., Hussien, Z.F., Rahim, A.A., Abdullah, N.: Electric power transmission. In: Power Electronics Handbook, pp. 829–846. Elsevier, Amsterdam (2018)

    Google Scholar 

  14. Vieux, F., Maillot, M., Constant, F., Drewnowski, A.: Water and beverage consumption patterns among 4 to 13-year-old children in the United Kingdom. BMC Public Health 17(1), 1–12 (2017). https://doi.org/10.1186/s12889-017-4400-y

    CrossRef  Google Scholar 

  15. Chahartaghi, M., Baghaee, A.: Technical and economic analyses of a combined cooling, heating and power system based on a hybrid microturbine (solar-gas) for a residential building. Energy Build. 217, 110005 (2020). https://doi.org/10.1016/j.enbuild.2020.110005

    CrossRef  Google Scholar 

  16. Wang, W., Ragnolo, G., Aichmayer, L., Strand, T., Laumert, B.: Integrated design of a hybrid gas turbine-receiver unit for a solar dish system. Energy Procedia 69, 583–592 (2015). https://doi.org/10.1016/j.egypro.2015.03.067

    CrossRef  Google Scholar 

  17. Arroyo, A., McLorn, M., Fabian, M., White, M., Sayma, A.I.: Rotor-dynamics of different shaft configurations for a 6 KW micro gas turbine for concentrated solar power. In: Proceedings of the ASME Turbo Expo, vol. 8 (September 2016). https://doi.org/10.1115/GT2016-56479

  18. Giostri, A., Macchi, E.: An advanced solution to boost sun-to-electricity efficiency of parabolic dish. Sol. Energy 139, 337–354 (2016). https://doi.org/10.1016/j.solener.2016.10.001

    CrossRef  Google Scholar 

  19. Vargas Guativa, J.A., Velásquez Clavijo, F., Torres Gómez, C.: Desarrollo del prototipo de un hidrogenerador eléctrico como alternativa de generación de energía limpia en zonas rurales. Universidad Libre Seccional Barranquilla (2016). https://dialnet.unirioja.es/servlet/articulo?codigo=5980557&info=resumen&idioma=SPA. Accessed 11 Oct 2020

  20. Ancona, M.A., et al.: Combined heat and power generation systems design for residential houses. Energy Procedia 158(2018), 2768–2773 (2019). https://doi.org/10.1016/j.egypro.2019.02.036

    CrossRef  Google Scholar 

  21. certificados energeticos.com: Obtener certificado energético. Certificado de eficiencia energética (2019). https://www.certificadosenergeticos.com/. Accessed 30 Sep 2020

  22. de Cabo, J.V., de la Fuente Díez, E., Verdejo, M.Z.: Modelos de estudios en investigación aplicada: conceptos y criterios para el diseño. Med. Segur. Trab. (Madr) 54(210), 81–88 (2008). https://scielo.isciii.es/scielo.php?script=sci_arttext&pid=S0465-546X2008000100011. Accessed 11 Oct 2020

  23. McDonald, R.P.: The informative analysis of individual trend curves. Multivar. Behav. Res. 39(3), 517–563 (2004). https://doi.org/10.1207/s15327906mbr3903_5

    CrossRef  Google Scholar 

  24. ICONTEC: NTC-1500 CODIGO COLOMBIANO DE INSTALACIONES. Bogota (2017). https://www.aprocof.co/descargas/icontec/PRESENTACION. ICONTEC NTC-1500 2.pdf

  25. Interpretar todos los estadísticos y gráficas para Análisis de tendencia - Minitab. https://support.minitab.com/es-mx/minitab/18/help-and-how-to/modeling-statistics/time-series/how-to/trend-analysis/interpret-the-results/all-statistics-and-graphs/. Accessed 11 Oct 2020

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. G. Ascanio-Villabona .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Ascanio-Villabona, J.G., Del Portillo-Valdés, L.A., Lengerke-Pérez, O., Romero, B.E.T., Rincón-Quintero, A.D., Durán-Sarmiento, M.A. (2021). Analysis of the Energy Potential of a Tangential Microturbine for Application in a Passivhaus Environment. In: Botto Tobar, M., Cruz, H., Díaz Cadena, A. (eds) Recent Advances in Electrical Engineering, Electronics and Energy. CIT 2020. Lecture Notes in Electrical Engineering, vol 763. Springer, Cham. https://doi.org/10.1007/978-3-030-72212-8_14

Download citation