Skip to main content

Trends in Technological Advances in Food Dehydration, Identifying the Potential Extrapolated to Cocoa Drying: A Bibliometric Study

  • 135 Accesses

Part of the Lecture Notes in Electrical Engineering book series (LNEE,volume 763)

Abstract

This work presents a systematic review of the literature based on bibliometric networks structured with the VOSviewer application, which was run on different scientific databases, seeking for improvements of drying processes of food and other biomasses in rural contexts. Analyzed data reveals a growing interest on topics dealing with storage of solar thermal energy and mathematical modelling to predict properties of air, as a drying fluid in solar and hybrid dryers. Solar-biomass hybrid drying technologies that use residual heat are currently being applied. At the level of mathematical models, the literature analysis cover heat transfer mechanisms related to changes in absolute and relative humidity of the air and food biomasses. Therefore, a promissory horizon to develop a continuous dryer for cocoa beans, enabling an improvement of the final quality of dried biomass and reducing operation periods for this process in low-economy countries has been elucidated through this review.

Keywords

  • Bibliometric analysis
  • Scientific research
  • VOSviewer tool
  • Dryer
  • Biomass
  • Mathematical models

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-72212-8_13
  • Chapter length: 14 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   229.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-72212-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   299.99
Price excludes VAT (USA)
Hardcover Book
USD   299.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

References

  1. van Eck, N.J., Waltman, L.: Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 84(2), 523–538 (2010). https://doi.org/10.1007/s11192-009-0146-3

    CrossRef  Google Scholar 

  2. Gil, M., et al.: Effect of temperature on the formation of acrylamide in cocoa beans during drying treatment: an experimental and computational study. Heliyon 6(2), e03312 (2020). https://doi.org/10.1016/j.heliyon.2020.e03312

    MathSciNet  CrossRef  Google Scholar 

  3. Rincón-Quintero, A.D., et al.: Manufacture of hybrid pieces using recycled R-PET, polypropylene PP and cocoa pod husks ash CPHA, by pneumatic injection controlled with LabVIEW Software and Arduino Hardware. In: IOP Conference Series: Materials Science and Engineering, vol. 844, no. 1 (2020). https://doi.org/10.1088/1757-899X/844/1/012054

  4. Ananno, A.A., Masud, M.H., Dabnichki, P., Ahmed, A.: Design and numerical analysis of a hybrid geothermal PCM flat plate solar collector dryer for developing countries. Sol. Energy 196, 270–286 (2020). https://doi.org/10.1016/j.solener.2019.11.069

    CrossRef  Google Scholar 

  5. Sharma, A., Chen, C.R., Vu Lan, N.: Solar-energy drying systems: a review. Renew. Sustain. Energy Rev. 13(6–7), 1185–1210 (2009). https://doi.org/10.1016/j.rser.2008.08.015

    CrossRef  Google Scholar 

  6. Ascanio-Villabona, J.G., et al.: Incidence of corrosion in low voltage electrical conductor. In: IOP Conference Series: Materials Science and Engineering, vol. 844, no. 1 (2020). https://doi.org/10.1088/1757-899X/844/1/012055

  7. Kumar, M., Sansaniwal, S.K., Khatak, P.: Progress in solar dryers for drying various commodities. Renew. Sustain. Energy Rev. 55, 346–360 (2016). https://doi.org/10.1016/j.rser.2015.10.158

    CrossRef  Google Scholar 

  8. FEDECACAO: Guía técnica del cultivo de cacao (2012)

    Google Scholar 

  9. Cárdenas-Arias, C.G., et al.: Elasticity modulus variation of the AISI SAE 1045 steel subjected to corrosion process by chloride using tension test destructive. In: IOP Conference Series: Materials Science and Engineering, vol. 844, no. 1 (2020). https://doi.org/10.1088/1757-899X/844/1/012059

  10. El Hage, H., Herez, A., Ramadan, M., Bazzi, H., Khaled, M.: An investigation on solar drying: a review with economic and environmental assessment. Energy 157, 815–829 (2018). https://doi.org/10.1016/j.energy.2018.05.197

    CrossRef  Google Scholar 

  11. Lamidi, R.O., Jiang, L., Pathare, P.B., Wang, Y.D., Roskilly, A.P.: Recent advances in sustainable drying of agricultural produce: a review. Appl. Energy 233–234, 367–385 (2019). https://doi.org/10.1016/j.apenergy.2018.10.044

    CrossRef  Google Scholar 

  12. Tiwari, S., Agrawal, S., Tiwari, G.N.: PVT air collector integrated greenhouse dryers. Renew. Sustain. Energy Rev. 90, 142–159 (2018). https://doi.org/10.1016/j.rser.2018.03.043

    CrossRef  Google Scholar 

  13. Pirasteh, G., Saidur, R., Rahman, S.M.A., Rahim, N.A.: A review on development of solar drying applications. Renew. Sustain. Energy Rev. 31, 133–148 (2014). https://doi.org/10.1016/j.rser.2013.11.052

    CrossRef  Google Scholar 

  14. Prakash, O., Kumar, A.: Historical review and recent trends in solar drying systems. Int. J. Green Energy 10(7), 690–738 (2013). https://doi.org/10.1080/15435075.2012.727113

    CrossRef  Google Scholar 

  15. Sandá, A., Moya, S.L., Valenzuela, L.: Modelling and simulation tools for direct steam generation in parabolic-trough solar collectors: a review. Renew. Sustain. Energy Rev. 113, 109226 (2019). https://doi.org/10.1016/j.rser.2019.06.033

    CrossRef  Google Scholar 

  16. Ferreira, A.G., Gonçalves, L.M., Maia, C.B.: Solar drying of a solid waste from steel wire industry. Appl. Therm. Eng. 73(1), 104–110 (2014). https://doi.org/10.1016/j.applthermaleng.2014.07.047

    CrossRef  Google Scholar 

  17. Atalay, H.: Performance analysis of a solar dryer integrated with the packed bed thermal energy storage (TES) system. Energy 172, 1037–1052 (2019). https://doi.org/10.1016/j.energy.2019.02.023

    CrossRef  Google Scholar 

  18. Perea-Moreno, A.J., Juaidi, A., Manzano-Agugliaro, F.: Solar greenhouse dryer system for wood chips improvement as biofuel. J. Clean. Prod. 135, 1233–1241 (2016). https://doi.org/10.1016/j.jclepro.2016.07.036

    CrossRef  Google Scholar 

  19. Chel, A., Kaushik, G.: Renewable energy for sustainable agriculture. Agron. Sustain. Dev. 31(1), 91–118 (2011). https://doi.org/10.1051/agro/2010029

    CrossRef  Google Scholar 

  20. Panwar, N.L., Kaushik, S.C., Kothari, S.: A review on energy and exergy analysis of solar dying systems. Renew. Sustain. Energy Rev. 16(5), 2812–2819 (2012). https://doi.org/10.1016/j.rser.2012.02.053

    CrossRef  Google Scholar 

  21. Singh, P., Shrivastava, V., Kumar, A.: Recent developments in greenhouse solar drying: a review. Renew. Sustain. Energy Rev. 82, 3250–3262 (2018). https://doi.org/10.1016/j.rser.2017.10.020

    CrossRef  Google Scholar 

  22. Romuli, S., Schock, S., Nagle, M., Chege, C.G.K., Müller, J.: Technical performance of an inflatable solar dryer for drying amaranth leaves in Kenya. Appl. Sci. 9(16), 3431 (2019). https://doi.org/10.3390/app9163431

    CrossRef  Google Scholar 

  23. Vergara, S., Hadzich, M., Tipula, R., Perez, J., Lopez Vasquez, E., Herrera, E.: Thermal analysis and validation of a geodesic dome dryer for capsicum baccatum, p. 10 (2019). https://doi.org/10.18086/eurosun2018.08.06

  24. Camas-Nafate, M.P., Alvarez-Gutiérrez, P., Valenzuela-Mondaca, E., Castillo-Palomera, R., Perez-Luna, Y.D.C.: Improved agricultural products drying through a novel double collector solar device. Sustainability 11(10), 2920 (2019). https://doi.org/10.3390/su11102920

    CrossRef  Google Scholar 

  25. Azouma, Y.O., Drigalski, L., Jegla, Z., Reppich, M.: Indirect convective solar drying process of pineapples as part of circular economy strategy. Energies 12, 2841 (2019). https://doi.org/10.3390/en12152841

    CrossRef  Google Scholar 

  26. Nukulwar, M.R., Tungikar, V.B.: Thin-layer mathematical modeling of turmeric in indirect natural conventional solar dryer. J. Sol. Energy Eng. 142(4), 041001 (2020). https://doi.org/10.1115/1.4045828

    CrossRef  Google Scholar 

  27. Okoroigwe, E.C., Eke, M.N., Ugwu, H.U.: Design and evaluation of combined solar and biomass dryer for small and medium enterprises for developing countries. Int. J. Phys. Sci. 8(25), 1341–1349 (2013). https://doi.org/10.5897/IJPS2013.3937

    CrossRef  Google Scholar 

  28. Dhanushkodi, S., Wilson, V.H., Sudhakar, K.: Design and thermal performance of the solar biomass hybrid dryer for cashew drying. Facta Univ. Mech. Eng. 12(3), 277–288 (2014). https://casopisi.junis.ni.ac.rs/index.php/FUMechEng/article/view/564/270

  29. Dhanushkodi, S., Wilson, V.H., Sudhakar, K.: Life cycle cost of solar biomass hybrid dryer systems for cashew drying of nuts in India. Environ. Clim. Technol. 15(1), 22–33 (2015). https://doi.org/10.1515/rtuect-2015-0003

    CrossRef  Google Scholar 

  30. Tiwari, S., Tiwari, G.N.: Thermal analysis of photovoltaic thermal integrated greenhouse system (PVTIGS) for heating of slurry in potable biogas plant: an experimental study. Sol. Energy 155, 203–211 (2017). https://doi.org/10.1016/j.solener.2017.06.021

    CrossRef  Google Scholar 

  31. Azaizia, Z., Kooli, S., Elkhadraoui, A., Hamdi, I., Guizani, A.A.: Investigation of a new solar greenhouse drying system for peppers. Int. J. Hydrog. Energy 42(13), 8818–8826 (2017). https://doi.org/10.1016/j.ijhydene.2016.11.180

    CrossRef  Google Scholar 

  32. Hamdi, I., Kooli, S., Elkhadraoui, A., Azaizia, Z., Abdelhamid, F., Guizani, A.: Experimental study and numerical modeling for drying grapes under solar greenhouse. Renew. Energy 127, 936–946 (2018). https://doi.org/10.1016/j.renene.2018.05.027

    CrossRef  Google Scholar 

  33. Boulemtafes-Boukadoum, A., Benzaoui, A.: Energy and exergy analysis of solar drying process of mint. Energy Procedia 6, 583–591 (2011). https://doi.org/10.1016/j.egypro.2011.05.067

    CrossRef  Google Scholar 

  34. Fernández, A., Dieste, J.A.: Low and medium temperature solar thermal collector based in innovative materials and improved heat exchange performance. Energy Convers. Manag. 75, 118–129 (2013). https://doi.org/10.1016/j.enconman.2013.06.007

    CrossRef  Google Scholar 

  35. Lowder, S.K., Skoet, J., Raney, T.: The number, size, and distribution of farms, smallholder farms, and family farms worldwide. World Dev. 87, 16–29 (2016). https://doi.org/10.1016/j.worlddev.2015.10.041

    CrossRef  Google Scholar 

  36. Ascanio-Villabona, J.G., et al.: Building a prototype for functional analysis of the energy potential of the water flow in pipe 1/2 “using microturbines applied to Unidades Tecnológicas de Santander. In: IOP Conference Series: Materials Science and Engineering, vol. 844, no. 1, p. 012056 (2020). https://doi.org/10.1088/1757-899X/844/1/012056

  37. Sandali, M., Boubekri, A., Mennouche, D., Gherraf, N.: Improvement of a direct solar dryer performance using a geothermal water heat exchanger as supplementary energetic supply: an experimental investigation and simulation study. Renew. Energy 135, 186–196 (2019). https://doi.org/10.1016/j.renene.2018.11.086

    CrossRef  Google Scholar 

  38. Sharma, A., Tyagi, V.V., Chen, C.R., Buddhi, D.: Review on thermal energy storage with phase change materials and applications. Renew. Sustain. Energy Rev. 13(2), 318–345 (2009). https://doi.org/10.1016/j.rser.2007.10.005

    CrossRef  Google Scholar 

  39. Sreerag, T.S., Jithish, K.S.: Experimental investigations of a solar dryer with and without multiple phase change materials (PCM’s). World J. Eng. 13(3), 210–217 (2016). https://doi.org/10.1108/WJE-06-2016-028

    CrossRef  Google Scholar 

  40. Bhagwat, V.V., Salve, S.P., Debnath, S.: Experimental analysis of a solar dehydration with phase changing material. In: AIP Conference Proceedings, vol. 1998, no. 1, p. 20003 (August 2018). https://doi.org/10.1063/1.5049099

  41. Romero-Tarazona, B.E., et al.: Development of an artificial vision system that allows non-destructive testing on flat concrete slabs for surface crack detection by processing of digital images in MATLAB. In: IOP Conference Series: Materials Science and Engineering, vol. 844, no. 1 (2020). https://doi.org/10.1088/1757-899X/844/1/012058

  42. Shalaby, S.M., Bek, M.A.: Experimental investigation of a novel indirect solar dryer implementing PCM as energy storage medium. Energy Convers. Manag. 83, 1–8 (2014). https://doi.org/10.1016/j.enconman.2014.03.043

    CrossRef  Google Scholar 

  43. Reyes, A., Mahn, A., Vásquez, F.: Mushrooms dehydration in a hybrid-solar dryer, using a phase change material. Energy Convers. Manag. 83, 241–248 (2014). https://doi.org/10.1016/j.enconman.2014.03.077

    CrossRef  Google Scholar 

  44. Atalay, H., Turhan, M., Olcay, K.: Modeling of the drying process of apple slices: application with a solar dryer and the thermal energy storage system. Energy 134, 382–391 (2017). https://doi.org/10.1016/j.energy.2017.06.030

    CrossRef  Google Scholar 

  45. Khouya, A.: Effect of regeneration heat and energy storage on thermal drying performance in a hardwood solar kiln. Renew. Energy 155, 783–799 (2020). https://doi.org/10.1016/j.renene.2020.03.178

    CrossRef  Google Scholar 

  46. Escobar, M., Cuervo-Andrade, S., Rincon-Prat, S.: Methodology for the design of a thermal energy storage module for a solar tunnel dryer using phase change materials (PCM). Rev. UIS Ing. 13(1), 9–20 (2018). https://doi.org/10.18273/revuin.v17n1-2018001

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. D. Rincón-Quintero .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Rincón-Quintero, A.D., Del Portillo-Valdés, L.A., Meneses-Jácome, A., Sandoval-Rodríguez, C.L., Rondón-Romero, W.L., Ascanio-Villabona, J.G. (2021). Trends in Technological Advances in Food Dehydration, Identifying the Potential Extrapolated to Cocoa Drying: A Bibliometric Study. In: Botto Tobar, M., Cruz, H., Díaz Cadena, A. (eds) Recent Advances in Electrical Engineering, Electronics and Energy. CIT 2020. Lecture Notes in Electrical Engineering, vol 763. Springer, Cham. https://doi.org/10.1007/978-3-030-72212-8_13

Download citation