Skip to main content

Performance Evaluation and Effectiveness of a Solar-Biomass Hybrid Dryer for Drying Homogeneous of Cocoa Beans Using LabView Software and Arduino Hardware

  • Conference paper
  • First Online:
Recent Advances in Electrical Engineering, Electronics and Energy (CIT 2020)

Abstract

The research evaluates the performance and effectiveness of a solar-biomass hybrid prototype for drying cocoa beans, which takes advantage of solar energy in the application area and the calorific value of the dried cocoa pod shell, performing a continuous drying in 36 h, reducing the time by 70% compared to traditional drying. The experimental tests of this technology were carried out in the Department of Santander in northeast Colombia. The equipment has a cylindrical mesh drum, coupled to a rotation system that rotates in specific periods of time, allowing a homogeneous drying of the almonds deposited in it. The electrical and electronic systems are powered by photovoltaic energy. The programming carried out with LabView allows to control and maintain the thermodynamic conditions of the air (e.g. temperature below 60 °C) of drying, guaranteeing the final quality and a humidity of the grain that varies between 6.5 to 7.5%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. ICCO: What is Fine or Flavour Cocoa? International Cocoa Organization (2019)

    Google Scholar 

  2. Rincón-Quintero, A.D., et al.: Manufacture of hybrid pieces using recycled R-PET, polypropylene PP and cocoa pod husks ash CPHA, by pneumatic injection controlled with LabVIEW Software and Arduino Hardware. IOP Conf. Ser. Mater. Sci. Eng. 844(1) (2020)

    Google Scholar 

  3. Mohammed, S., Fatumah, N., Shadia, N.: Drying performance and economic analysis of novel hybrid passive-mode and active-mode solar dryers for drying fruits in East Africa. J. Stored Prod. Res. 88, 101634 (2020)

    Article  Google Scholar 

  4. Atalay, H.: Performance analysis of a solar dryer integrated with the packed bed thermal energy storage (TES) system. Energy 172, 1037–1052 (2019)

    Article  Google Scholar 

  5. Rodriguez-Campos, J., Escalona-Buendía, H.B., Contreras-Ramos, S.M., Orozco-Avila, I., Jaramillo-Flores, E., Lugo-Cervantes, E.: Effect of fermentation time and drying temperature on volatile compounds in cocoa. Food Chem. 132(1), 277–288 (2012)

    Article  Google Scholar 

  6. Beg, M.S., Ahmad, S., Jan, K., Bashir, K.: Status, supply chain and processing of cocoa - a review. Trends Food Sci. Technol. 66, 108–116 (2017)

    Article  Google Scholar 

  7. John, W.A., et al.: Experimentally modelling cocoa bean fermentation reveals key factors and their influences. Food Chem. 302, 125335 (2020)

    Article  Google Scholar 

  8. Zoukit, A., El Ferouali, H., Salhi, I., Doubabi, S., Abdenouri, N.: Simulation, design and experimental performance evaluation of an innovative hybrid solar-gas dryer. Energy 189, 116279 (2019)

    Article  Google Scholar 

  9. Ndukwu, M.C., Simo-Tagne, M., Abam, F.I., Onwuka, O.S., Prince, S., Bennamoun, L.: Exergetic sustainability and economic analysis of hybrid solar-biomass dryer integrated with copper tubing as heat exchanger. Heliyon 6(2), e03401 (2020)

    Article  Google Scholar 

  10. da Silva, G.M., Ferreira, A.G., Coutinho, R.M., Maia, C.B.: Thermodynamic analysis of a sustainable hybrid dryer. Sol. Energy 208, 388–398 (2020)

    Article  Google Scholar 

  11. Lakshmi, D.V.N., Muthukumar, P., Layek, A., Nayak, P.K.: Performance analyses of mixed mode forced convection solar dryer for drying of stevia leaves. Sol. Energy 188, 507–518 (2019)

    Article  Google Scholar 

  12. Lamidi, R.O., Jiang, L., Pathare, P.B., Wang, Y.D., Roskilly, A.P.: Recent advances in sustainable drying of agricultural produce: a review. Appl. Energy 233–234, 367–385 (2019)

    Google Scholar 

  13. Sandoval-Rodriguez, C.L., et al.: Characterization of the mechanical vibration signals associated with unbalance and misalignment in rotating machines, using the cepstrum transformation and the principal component analysis. IOP Conf. Ser. Mater. Sci. Eng. 844(1) (2020)

    Google Scholar 

  14. Puello-Mendez, J., et al.: Comparative study of solar drying of cocoa beans: two methods used in Colombian rural areas. Chem. Eng. Trans. 57(2012), 1711–1716 (2017)

    Google Scholar 

  15. Ascanio-Villabona, J.G., et al.: Building a prototype for functional analysis of the energy potential of the water flow in pipe 1/2 “using microturbines applied to Unidades Tecnológicas de Santander. IOP Conf. Ser. Mater. Sci. Eng. 844(1), 0–26 (2020)

    Google Scholar 

  16. Barrientos, L.D.P., Oquendo, J.D.T., Garzón, M.A.G., Álvarez, O.L.M.: Effect of the solar drying process on the sensory and chemical quality of cocoa (Theobroma cacao L.) cultivated in Antioquia, Colombia. Food Res. Int. 115(52), 259–267 (2019)

    Article  Google Scholar 

  17. Cárdenas-Arias, C.G., et al.: Elasticity modulus variation of the AISI SAE 1045 steel subjected to corrosion process by chloride using tension test destructive. IOP Conf. Ser. Mater. Sci. Eng. 844(1) (2020)

    Google Scholar 

  18. Natarajan, K., Thokchom, S.S., Verma, T.N., Nashine, P.: Convective solar drying of Vitis vinifera & Momordica charantia using thermal storage materials. Renew. Energy 113, 1193–1200 (2017)

    Article  Google Scholar 

  19. Lingayat, A.B., Chandramohan, V.P., Raju, V.R.K., Meda, V.: A review on indirect type solar dryers for agricultural crops – dryer setup, its performance, energy storage and important highlights. Appl. Energy 258, 114005 (2020)

    Article  Google Scholar 

  20. Kumar, D., Mahanta, P., Kalita, P.: Energy and exergy analysis of a natural convection dryer with and without sensible heat storage medium. J. Energy Storage 29, 101481 (2020)

    Article  Google Scholar 

  21. Murali, S., Amulya, P.R., Alfiya, P.V., Delfiya, D.S.A., Samuel, M.P.: Design and performance evaluation of solar - LPG hybrid dryer for drying of shrimps. Renew. Energy 147, 2417–2428 (2020)

    Article  Google Scholar 

  22. Mustayen, A.G.M.B., Mekhilef, S., Saidur, R.: Performance study of different solar dryers: a review. Renew. Sustain. Energy Rev. 34, 463–470 (2014)

    Article  Google Scholar 

  23. Vijayan, S., Arjunan, T.V., Kumar, A.: Mathematical modeling and performance analysis of thin layer drying of bitter gourd in sensible storage based indirect solar dryer. Innov. Food Sci. Emerg. Technol. 36, 59–67 (2016)

    Article  Google Scholar 

  24. Vijayavenkataraman, S., Iniyan, S., Goic, R.: A review of solar drying technologies. Renew. Sustain. Energy Rev. 16(5), 2652–2670 (2012)

    Article  Google Scholar 

  25. Fudholi, A., Sopian, K.: A review of solar air flat plate collector for drying application. Renew. Sustain. Energy Rev., 102, 333–345 (2019)

    Google Scholar 

  26. Romero-Tarazona, B.E., et al.: Development of an artificial vision system that allows non-destructive testing on flat concrete slabs for surface crack detection by processing of digital images in MATLAB. IOP Conf. Ser. Mater. Sci. Eng. 844(1) (2020)

    Google Scholar 

  27. Kiburi, F.G., Kanali, C.L., Kituu, G.M., Ajwang, P.O., Ronoh, E.K.: Performance evaluation and economic feasibility of a solar-biomass hybrid greenhouse dryer for drying Banana slices. Renew. Energy Focus 34, 60–68 (2020)

    Article  Google Scholar 

  28. Yadav, S., Chandramohan, V.P.: Performance comparison of thermal energy storage system for indirect solar dryer with and without finned copper tube. Sustain. Energy Technol. Assess. 37, 100609 (2020)

    Google Scholar 

  29. Folayan, J.A., Osuolale, F.N., Anawe, P.A.L.: Data on exergy and exergy analyses of drying process of onion in a batch dryer. Data Br. 21, 1784–1793 (2018)

    Article  Google Scholar 

  30. Campos-Vega, R., Nieto-Figueroa, K.H., Oomah, B.D.: Cocoa (Theobroma cacao L.) pod husk: renewable source of bioactive compounds. Trends Food Sci. Technol. 81, 172–184 (2018)

    Google Scholar 

  31. Ascanio-Villabona, J.G., et al.: Incidence of corrosion in low voltage electrical conductor. IOP Conf. Ser. Mater. Sci. Eng. 844(1) (2020)

    Google Scholar 

  32. Orbegoso, E.M., Saavedra, R., Marcelo, D., La Madrid, R.: Numerical characterisation of one-step and three-step solar air heating collectors used for cocoa bean solar drying. J. Environ. Manage. 203, 1080–1094 (2017)

    Article  Google Scholar 

  33. Koenka, I.J., Sáiz, J., Hauser, P.C.: Instrumentino: An open-source modular Python framework for controlling Arduino based experimental instruments. Comput. Phys. Commun. 185(10), 2724–2729 (2014)

    Article  Google Scholar 

  34. Beyaz, A.: Harvest glove and LabView based mechanical damage determination on apples. Sci. Hortic. (Amsterdam). 228, 49–55 (2018)

    Google Scholar 

  35. Gosai, M., Bhavsar, S.N.: Experimental study on temperature measurement in turning operation of hardened steel (EN36). Procedia Technol. 23, 311–318 (2016)

    Article  Google Scholar 

  36. Bosomtwe, A., et al.: Effectiveness of the solar biomass hybrid dryer for drying and disinfestation of maize. J. Stored Prod. Res. 83, 66–72 (2019)

    Article  Google Scholar 

  37. Ssemwanga, M., Makule, E., Kayondo, S.I.: Performance analysis of an improved solar dryer integrated with multiple metallic solar concentrators for drying fruits. Sol. Energy 204, 419–428 (2020)

    Article  Google Scholar 

  38. Sethi, V.P., Dhiman, M.: Design, space optimization and modelling of solar-cum-biomass hybrid greenhouse crop dryer using flue gas heat transfer pipe network. Sol. Energy 206, 120–135 (2020)

    Article  Google Scholar 

  39. Singh, A., Sarkar, J., Sahoo, R.R.: Experimental performance analysis of novel indirect-expansion solar-infrared assisted heat pump dryer for agricultural products. Sol. Energy 206, 907–917 (2020)

    Article  Google Scholar 

  40. Mata-Quirós, A., et al.: Assessing hidden parentage and genetic integrity of the ‘United Fruit Clones’ of cacao (Theobroma cacao) from Costa Rica using SNP markers. Breed. Sci. 68(5), 545–553 (2018)

    Article  Google Scholar 

  41. Martínez-Ángel, J.D., Villamizar-Gallardo, R.A., Ortíz-Rodríguez, O.O.: Characterization and evaluation of cocoa (Theobroma cacao L.) pod husk as a renewable energy source. Agrociencia 49(3), 329–345 (2015)

    Google Scholar 

  42. Mohana, Y., Mohanapriya, R., Anukiruthika, T., Yoha, K.S., Moses, J.A., Anandharamakrishnan, C.: Solar dryers for food applications: Concepts, designs, and recent advances. Sol. Energy 208, 321–344 (2020)

    Article  Google Scholar 

  43. Dutta, P., Dutta, P.P., Kalita, P.: Thermal performance studies for drying of Garcinia pedunculata in a free convection corrugated type of solar dryer. Renew. Energy 163, 599–612 (2021)

    Article  Google Scholar 

  44. Abunde Neba, F., Jiokap Nono, Y.: Modeling and simulated design: A novel model and software of a solar-biomass hybrid dryer. Comput. Chem. Eng. 104, 128–140 (2017)

    Google Scholar 

  45. Nukulwar, M.R., Tungikar, V.B.: A review on performance evaluation of solar dryer and its material for drying agricultural products. Mater. Today Proc. (2020)

    Google Scholar 

  46. Azam, M.M., Eltawil, M.A., Amer, B.M.A.: Thermal analysis of PV system and solar collector integrated with greenhouse dryer for drying tomatoes. Energy 212, 118764 (2020)

    Article  Google Scholar 

  47. Khanlari, A., et al.: Experimental and numerical study of the effect of integrating plus-shaped perforated baffles to solar air collector in drying application. Renew. Energy 145, 1677–1692 (2020)

    Article  Google Scholar 

  48. Simo-Tagne, M., Ndukwu, M.C., Zoulalian, A., Bennamoun, L., Kifani-Sahban, F., Rogaume, Y.: Numerical analysis and validation of a natural convection mix-mode solar dryer for drying red chilli under variable conditions. Renew. Energy 151, 659–673 (2020)

    Article  Google Scholar 

  49. Ndukwu, M.C., Onyenwigwe, D., Abam, F.I., Eke, A.B., Dirioha, C.: Development of a low-cost wind-powered active solar dryer integrated with glycerol as thermal storage. Renew. Energy 154, 553–568 (2020)

    Article  Google Scholar 

  50. Amjad, W., Ali Gilani, G., Munir, A., Asghar, F., Ali, A., Waseem, M.: Energetic and exergetic thermal analysis of an inline-airflow solar hybrid dryer. Appl. Therm. Eng. 166, 114632 (2020)

    Google Scholar 

  51. Hamdani, T.A.R., Muhammad, Z.: Fabrication and testing of hybrid solar-biomass dryer for drying fish. Case Stud. Therm. Eng. 12, 489–496 (2018)

    Google Scholar 

  52. Morris, A.S., Langari, R.: Data Acquisition with LabVIEW. Meas. Instrum. 347–374 (2016)

    Google Scholar 

  53. Tiernan, P.: Enhancing the learning experience of undergraduate technology students with LabVIEWTM software. Comput. Educ. 55(4), 1579–1588 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arly Dario Rincón-Quintero .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rincón-Quintero, A.D., Del Portillo-Valdés, L.A., Meneses-Jácome, A., Ascanio-Villabona, J.G., Tarazona-Romero, B.E., Durán-Sarmiento, M.A. (2021). Performance Evaluation and Effectiveness of a Solar-Biomass Hybrid Dryer for Drying Homogeneous of Cocoa Beans Using LabView Software and Arduino Hardware. In: Botto Tobar, M., Cruz, H., Díaz Cadena, A. (eds) Recent Advances in Electrical Engineering, Electronics and Energy. CIT 2020. Lecture Notes in Electrical Engineering, vol 762. Springer, Cham. https://doi.org/10.1007/978-3-030-72208-1_18

Download citation

Publish with us

Policies and ethics