Skip to main content

Surface Chemistry and Adsorption on Glass Fibers

  • Chapter
  • First Online:
Fiberglass Science and Technology

Abstract

This chapter reviews issues associated with the surface chemistry and reactivity of glass fibers. Of particular interest here are the general-purpose industrial fibers, used for reinforcement and insulation, and relationships between glass composition and the subsequent surface and interface characteristics of the resulting fiber. To be sure, there are many drivers that influence the composition of such fibers including the melting and fiberization processes, cost, and environmental effects. But for the end user, the resulting fiber strength, corrosion resistance, and interfacial compatibility with sizing, binders and structural polymers are of most concern. A better understanding of the evolution of the glass fiber surface chemistry in the manufacturing process is needed for improved control in secondary processing and enhanced performance in the final product. Here, we first review fundamental factors that control the reactivity of the fiber surface relative to the glass composition and the fiberization process. With a focus on boron oxide effects in both alkali-free boroaluminosilicate (E-Glass model) and sodium-boroaluminosilicate (insulation glass model), the effects of surface composition on surface atomic structure and reactivity are described. The methods that are most suitable for surface analysis of glass fibers are also described, including new approaches such as near-edge X-ray absorption fine structure (NEXAFS) and inverse gas chromatography-temperature programmed desorption (IGC-TPD). The model glasses noted above are then used to exemplify the use of these methods for understanding the role of glass composition in surface reactivity, to present the challenges and limitations of glass fiber surface analyses, and to provide a platform for continued work in this important area of glass science.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dwight DW. Glass Fiber reinforcements. In: Kelly A, Zweben C, editors. Comprehensive composite materials. Oxford: Elsevier; 2000. p. 231–61.

    Chapter  Google Scholar 

  2. Thomason JL, Adzima LJ. Sizing up the interphase: an insider’s guide to the science of sizing. Compos Part A Appl Sci Manuf. 2001;32(3):313–21.

    Article  Google Scholar 

  3. Wallenberger FT, Bingham PA, editors. Fiberglass and glass technology. New York, NY: Springer; 2010. p. 474.

    Google Scholar 

  4. Matisons JG. Silanes and siloxanes as coupling agents to glass: a perspective. In: Owen MJ, Dvornic PR, editors. Silicone Surface Science. Dordrecht: Springer; 2012. p. 281–98.

    Chapter  Google Scholar 

  5. Shallenberger JR, Metwalli E, Pantano CG, Tuller FN, Fry DF. Adsorption of polyamides and polyamide–silane mixtures at glass surfaces. Surf Interface Anal. 2003;35(8):667–72.

    Article  CAS  Google Scholar 

  6. Stapleton JJ, Suchy DL, Banerjee J, Mueller KT, Pantano CG. Adsorption reactions of carboxylic acid functional groups on sodium aluminoborosilicate glass fiber surfaces. ACS Appl Mater Interfaces. 2010;2(11):3303–9.

    Article  CAS  Google Scholar 

  7. Ortiz Rivera L, Bakaev VA, Banerjee J, Mueller KT, Pantano CG. Characterization and reactivity of sodium aluminoborosilicate glass fiber surfaces. Appl Surf Sci. 2016;370:328–34.

    Article  CAS  Google Scholar 

  8. Leed EA, Pantano CG. Computer modeling of water adsorption on silica and silicate glass fracture surfaces. J Non-Cryst Solids. 2003;325(1):48–60.

    Article  CAS  Google Scholar 

  9. Leed EA, Sofo JO, Pantano CG. Electronic structure calculations of physisorption and chemisorption on oxide glass surfaces. Phys Rev B. 2005;72(15):155427.

    Article  CAS  Google Scholar 

  10. D’Souza AS, Pantano CG. Hydroxylation and dehydroxylation behavior of silica glass fracture surfaces. J Am Ceram Soc. 2002;85(6):1499–504.

    Article  Google Scholar 

  11. Schaut RA, Pantano CG. Acid interleave coatings inhibit float-glass weathering, corrosion. Am Ceram Soc Bull. 2005;10:44–9.

    Google Scholar 

  12. Smith NJ, Pantano CG. Leached layer formation on float glass surfaces in the presence of acid interleave coatings. J Am Ceram Soc. 2008;91(3):736–44.

    Article  CAS  Google Scholar 

  13. Ishida H, Koenig JL. A fourier-transform infrared spectroscopic study of the hydrolytic stability of silane coupling agents on E-glass fibers. J Polym Sci Polym Phys Ed. 1980;18(9):1931–43.

    Article  CAS  Google Scholar 

  14. Suzuki N, Ishida H. A review on the structure and characterization techniques of silane/matrix interphases. Macromol Symp. 1996;108(1):19–53.

    Article  CAS  Google Scholar 

  15. Wang D, Jones FR. ToF-SIMS and XPS studies of the interaction of silanes and matrix resins with glass surfaces. Surf Interface Anal. 1993;20(5):457–67.

    Article  CAS  Google Scholar 

  16. Almeida RM, Hickey R, Jain H, Pantano CG. Low-energy ion scattering spectroscopy of silicate glass surfaces. J Non-Cryst Solids. 2014;385:124–8.

    Article  CAS  Google Scholar 

  17. Pantano CG, Wittberg TN. XPS analysis of silane coupling agents and silane-treated E-glass fibers. Surf Interface Anal. 1990;15(8):498–501.

    Article  CAS  Google Scholar 

  18. Pantano CG, Carman LA, Warner S. Glass fiber surface effects in silane coupling. J Adhes Sci Technol. 1992;6(1):49–60.

    Article  CAS  Google Scholar 

  19. Pantano CG. X-ray photoelectron spectroscopy of glass. In: Simmons CJ, El-Bayoumi OH, editors. Experimental techniques of glass science. Westerville, OH: American Ceramic Society; 1993. p. 129–60.

    Google Scholar 

  20. Thomason JL, Dwight DW. The use of XPS for characterisation of glass fibre coatings. Compos Part A Appl Sci Manuf. 1999;30(12):1401–13.

    Article  Google Scholar 

  21. Seah. Instrument calibration for AES and XPS. In: Briggs D, Grant JT, editors. Surface analysis by auger and X-ray photoelectron spectroscopy. West Sussex: IM Publications; 2003. p. 345–76.

    Google Scholar 

  22. Metwalli E, Haines D, Becker O, Conzone S, Pantano CG. Surface characterizations of mono-, di-, and tri-aminosilane treated glass substrates. J Colloid Interface Sci. 2006;298(2):825–31.

    Article  CAS  Google Scholar 

  23. Smith GC. Evaluation of a simple correction for the hydrocarbon contamination layer in quantitative surface analysis by XPS. J Electron Spectros Relat Phenomena. 2005;148(1):21–8.

    Article  CAS  Google Scholar 

  24. Golombeck RA. Investigations of adsorption sites on oxide surfaces using solid-state NMR and TPD-IGC. In: chemistry. State College, PA: The Pennsylvania State University; 2008. p. 195.

    Google Scholar 

  25. Fry RA, Tsomaia N, Pantano CG, Mueller KT. 19F MAS NMR quantification of accessible hydroxyl sites on fiberglass surfaces. J Am Chem Soc. 2003;125(9):2378–9.

    Article  CAS  Google Scholar 

  26. Fry RA, Mueller K, Pantano CG. Effect of boron oxide on surface hydroxyl coverage of aluminoborosilicate glass fibres: a 19F solid state NMR study. Phys Chem Glasses. 2003;44(2):64–8.

    Google Scholar 

  27. Stöhr J. NEXAFS spectroscopy. Berlin: Springer-Verlag; 1992.

    Book  Google Scholar 

  28. Fleet ME, Muthupari S. Boron K-edge XANES of borate and borosilicate minerals. Am Mineral. 2000;85(7–8):1009–21.

    Google Scholar 

  29. Šipr O, Šimůnek A, Vackář J, Dalba G, Rocca F. Connection between spectral features of B K-edge XANES of minerals and the local structure. Phys Chem Glasses Euro J Glass Sci Technol Part B. 2006;47(4):412–8.

    Google Scholar 

  30. Xu DN, Peak D. Adsorption of boric acid on pure and humic acid coated am-Al(OH)3: a boron K-edge XANES study. Environ Sci Technol. 2007;41(3):903–8.

    Article  CAS  Google Scholar 

  31. Li D, Bancroft GM, Fleet ME, Hess PC, Yin ZF. Coordination of B in K2O-SiO2-B2O3-P2O5 glasses using B K-edge XANES. Am Mineral. 1995;80(9–10):873–7.

    Article  CAS  Google Scholar 

  32. Carboni R, Pacchion G, Fanciulli M, Giglia A, Mahne N, Pedio M, Nannarone S, Boscherini F. Coordination of boron and phosphorous in borophosphosilicate glasses. Appl Phys Lett. 2003;83(21):4312–4.

    Article  CAS  Google Scholar 

  33. Lee CH, Sohn HJ, Kim MG. XAS study on lithium ion conducting Li2O-SeO2-B2O3 glass electrolyte. Solid State Ionics. 2005;176(13–14):1237–41.

    Article  CAS  Google Scholar 

  34. Maia LJQ, Mastelaro VR, Schneider JF, Parent P, Laffon C. Structural studies in the BaO-B2O3-TiO2 system by XAS and B-11-NMR. J Solid State Chem. 2005;178(5):1452–63.

    Article  CAS  Google Scholar 

  35. Handa K, Ide J, Nishiyama Y, Ozutsumi K, Dalba G, Ohtori N, Umesaki N. XAS study of barium borate glasses and crystals. Phys Chem Glasses Eur J Glass Sci Technol Part B. 2006;47(4):445–7.

    CAS  Google Scholar 

  36. Fleet ME, Muthupari S. Coordination of boron in alkali borosilicate glasses using XANES. J Non-Cryst Solids. 1999;255(2):233–41.

    Article  CAS  Google Scholar 

  37. Fleet ME, Liu X. Boron K-edge XANES of boron oxides: tetrahedral B-O distances and near-surface alteration. Phys Chem Miner. 2001;28(6):421–7.

    Article  CAS  Google Scholar 

  38. Schaut RA, Lobello RA, Mueller KT, Pantano CG. Characterization of boroaluminosilicate glass surface structures by B K-edge NEXAFS. J Non-Cryst Solids. 2011;357(19–20):3416–23.

    Article  CAS  Google Scholar 

  39. Schaut RA. The effect of boron oxide on the composition, structure, and adsorptivity of glass surfaces. State College, PA: The Pennsylvania State University; 2008.

    Google Scholar 

  40. Pantano CG, D’Souza AS, Then AM. Electron beam damage at solid surfaces. In: Madey TE, Powell CJ, Czanderna AW, editors. Beam effects, surface topography, and depth profiling in surface analysis. New York, NY: Plenum; 1998.

    Google Scholar 

  41. Paryjczak T. Gas chromatography in adsorption and catalysis. Chichester: Ellis Horwood; 1986.

    Google Scholar 

  42. Tsutsumi K, Ohsuga T. Surface characterization of modified glass fibers by inverse gas chromatography. Colloid Polym Sci. 1990;268(1):38–44.

    Article  CAS  Google Scholar 

  43. Wesson SP, Jen JS, Nishioka GM. Acid-base characteristics of silane-treated E glass fiber surfaces. J Adhes Sci Technol. 1992;6(1):151–69.

    Article  CAS  Google Scholar 

  44. Bakaev VA, Bakaeva TI, Pantano CG. A study of glass surface heterogeneity and silylation by inverse gas chromatography. J Phys Chem B. 2002;106(47):12231–8.

    Article  CAS  Google Scholar 

  45. Saint Flour C, Papirer E. Gas-solid chromatography: a quick method of estimating surface free energy variations induced by the treatment of short glass fibers. J Colloid Interface Sci. 1983;91(1):69–75.

    Article  Google Scholar 

  46. Papirer E, Balard H. Influence of surface chemistry and surface morphology on the acid-base interaction capacities of glass fibers and silicas. J Adhesion Sci Technol. 1990;4(1):i-371.

    Article  Google Scholar 

  47. Bakaev VA, Pantano CG, Steele W. Silicate glass surfaces, their heterogeneity and computer simulations. In: Nardin M, Papirer E, editors. Powders and fibers: interfacial science and applications. Boca Raton, FL: CRC Press; 2006. p. 613–44.

    Google Scholar 

  48. Bakaev VA, Steele WA, Bakaeva TI, Pantano CG. Adsorption of CO2 and Ar on glass surfaces. Computer simulation and experimental study. J Chem Phys. 1999;111(21):9813–21.

    Article  CAS  Google Scholar 

  49. Bakaeva TI, Pantano CG, Loope CE, Bakaev VA. Heterogeneity of the glass fiber surface from inverse gas chromatography. J Phys Chem B. 2000;104(35):8518–26.

    Article  CAS  Google Scholar 

  50. Bakaev VA, Bakaeva TI, Pantano CG. On inverse adsorption chromatography. 2. Determination of isotherms and heats of adsorption as well as energy distributions of adsorption sites. J Phys Chem C. 2007;111(20):7473–86.

    Article  CAS  Google Scholar 

  51. Pantano CG. Chemical properties of real and ideal glass surfaces. In: McCauley JW, Weiss V, editors. Materials characterization for systems performance and reliability. Boston, MA: Springer; 1986. p. 127–48.

    Chapter  Google Scholar 

  52. Kelso JF, Pantano CG. Spectroscopic examination of clean glass surfaces at elevated temperatures. J Vacuum Sci Technol A Vacuum Surf Films. 1985;3(3):1343–6.

    Article  CAS  Google Scholar 

  53. Palmisiano MN, Boehman AL, Pantano CG. Processing effects on the surface composition of glass fiber. J Am Ceram Soc. 2000;83(10):2423–8.

    Article  CAS  Google Scholar 

  54. Kingery WD. Surface tension of some liquid oxides and their temperature coefficients. J Am Ceram Soc. 1959;42(1):6–10.

    Article  CAS  Google Scholar 

  55. Gupta PK. Glass fibers for composite materials. In: Bunsell AR, editor. Fibre reinforcements for composite materials. Amsterdam: Elsevier; 1988. p. 19–69.

    Google Scholar 

  56. Pantano CG, Beall DM, Cermignani W. Surface studies of borate glasses. In: Wright AC, Feller SA, Hannon AC, editors. Borate glasses, crystals & melts. Sheffield: Society of Glass Technology; 1997. p. 239–46.

    Google Scholar 

  57. Clare AG, Wing D, Jones LE, Kucuk A. Density and surface tension of borate containing silicate glass melts. Glass Technol. 2003;44(2):59–62.

    CAS  Google Scholar 

  58. Carman LA, Pantano CG. Water-vapor adsorption on calcium-boroaluminosilicate glass fibers. J Non-Cryst Solids. 1990;120(1):40–6.

    Article  CAS  Google Scholar 

  59. Kucuk A, Clare AG, Jones LE. Differences between surface and bulk properties of glass melts I. Compositional differences and influence of volatilization on composition and other physical properties. J Non-Cryst Solids. 2000;261(1):28–38.

    Article  CAS  Google Scholar 

  60. Oh SM. Cooling rates of optical fibers during drawing. Am Ceram Soc Bull. 1979;58(11):1108–10.

    Google Scholar 

  61. Varshneya AK. Fundamentals of inorganic glasses. Boston, MA: Academic; 1994. p. 570.

    Google Scholar 

  62. Shchukarev AV, Korolkov D. XPS study of group IA carbonates, vol. 2. New York, NY: Springer; 2004. p. 347–62.

    Google Scholar 

  63. Sprenger D, Bach H, Meisel W, Gütlich P. XPS study of leached glass surfaces. J Non-Cryst Solids. 1990;126(1):111–29.

    Article  CAS  Google Scholar 

  64. Veal BW, Lam DJ, Paulikas AP, Ching WY. XPS study of CaO in sodium silicate glass. J Non-Cryst Solids. 1982;49(1):309–20.

    Article  CAS  Google Scholar 

  65. Miotello A, Cinque G, Mazzoldi P, Pantano CG. Alkali-metal segregation at glass surfaces during electron irradiation. Phys Rev B. 1991;43(5):3831–6.

    Article  CAS  Google Scholar 

  66. Gupta PK, Lur ML, Bray PJ. Boron coordination in rapidly cooled and in annealed aluminum borosilicate glass fibers. J Am Ceram Soc. 1985;68(3):C-82.

    Article  CAS  Google Scholar 

  67. Wu J, Stebbin. Quench rate and temperature effects on boron coordination in aluminoborosilicate melts. J Non-Cryst Solids. 2010;356(41):2097–108.

    Article  CAS  Google Scholar 

  68. Ingri N, Lagerstrom G, Frydman M, Sillen LG. Equilibrium studies of polyanions: II Polyborates in NaClO4 medium. Acta Chem Scand. 1957;11(6):1034–58.

    Article  CAS  Google Scholar 

  69. Huang RJ, Demirel T, McGee TD. Calculation and interpretation of surface free energy of wetting of E-glass by vapors. J Am Ceram Soc. 1973;56(2):87–91.

    Article  CAS  Google Scholar 

  70. Defosse C, Scokart PO, Rouxhet RG. Characterization of the surface acidity and basicity by spectroscopic methods. Verres Refract. 1981;35:50–7.

    CAS  Google Scholar 

  71. Akinc M, Martin DM. Heat of adsorption of water on E glass fibre surfaces. Phys Chem Glasses. 1983;24:117–21.

    CAS  Google Scholar 

  72. Wittkopf H. Calculation of desorption energy distribution applied to temperature programmed H2O desorption from silicate glass surface. Vacuum. 1987;37(11):819–23.

    Article  CAS  Google Scholar 

  73. Nishioka GM. Adsorption/desorption of water on glass fiber surfaces. J Non-Cryst Solids. 1990;120(1):34–9.

    Article  CAS  Google Scholar 

  74. Trens P, Denoyel R, Guilloteau E. Evolution of surface composition, porosity, and surface area of glass fibers in a moist atmosphere. Langmuir. 1996;12(5):1245–50.

    Article  CAS  Google Scholar 

  75. Li H, Gu P, Watson JC. Acid corrosion resistance and mechanism of E-glass fibers: boron factor. J Mater Sci. 2013;48(8):3075–87.

    Article  CAS  Google Scholar 

  76. Bakaev VA, Rivera LO, Pantano CG. A dynamic volumetric method for measuring adsorption of water on glass fibers. J Phys Chem C. 2015;119(39):22504–13.

    Article  CAS  Google Scholar 

  77. Ortiz Rivera L, Bakaev VA, Pantano CG. The heterogeneity of glass surfaces revealed by temperature programmed desorption. J Am Ceram Soc. 2016;99(12):3932–40.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlo G. Pantano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Schaut, R.A., Bakaev, V.A., Pantano, C.G. (2021). Surface Chemistry and Adsorption on Glass Fibers. In: Li, H. (eds) Fiberglass Science and Technology. Springer, Cham. https://doi.org/10.1007/978-3-030-72200-5_3

Download citation

Publish with us

Policies and ethics