Skip to main content

Resilience and Adaptation Strategies for Urban Heat at Regional, City and Local Scales

  • Chapter
  • First Online:
Disaster Risk Reduction for Resilience

Abstract

An urban heat island (UHI) effect is a phenomenon that occurs when urban areas experience higher temperature than their surrounding rural areas. This contributes to global warming, risk of heat-related mortalities and unpredictable thermal conditions. Therefore, gaining insights into the knowledge of resilience and adaptation against adverse urban heat effects contribute to the development of sustainable cities. This chapter presents three case studies focusing on the contemporary Australian experience in mitigating UHI effects and thermal discomfort at regional, city and local scales. The case studies are based on satellite imagery, in situ observations and community engagement to deliver a comprehensive understanding of the contemporary efforts to reduce the effect of urban heat. On the regional scale, the role of strategic urban planning and related infill development policy on spatial variation of UHI was examined. This was conducted through diurnal and nocturnal moderate resolution imaging spectroradiometer (MODIS) imageries in South East Queensland between 2005 and 2018. Subsequently, this chapter describes an innovative approach to integrate geospatial data and community opinions on urban greening and community shade to develop a shade mapping and (walking) route comfort model for the city as an adaptation approach to excess heat in urban areas. Finally, the survey findings on the human–place relationship in urban environments of Melbourne’s central business district (CBD) under various meteorological conditions at the local level were presented. The findings will significantly contribute to enhance the resilience and adaptation strategies for urban heat.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Land surface temperature (LST) is the radiative skin temperature of the land derived from solar radiation. A simplified definition would be how hot the ‘surface’ of the earth would feel to the touch in a particular location. ESA (2019). [Accessed 17/11/2019].

Abbreviations

CBD:

Central business district

Cfb:

Oceanic temperate climate

GIS:

Geographic information system

LGA:

Local government areas

LST:

Land surface temperature

MODIS:

Moderate resolution imaging spectroradiometer

PET:

Physiological equivalent temperature

PGIS:

The participatory GIS

RH:

Relative humidity

RMS:

Root mean square

RUCC:

RMIT University City Campus

SEQ:

South East Queensland

SUH:

Surface urban heat island

T a :

Air temperature

T g :

Globe temperature

ToE:

Time of exposure

TSV:

Thermal sensation vote

UHI:

Urban heat island

USGS:

United States Geological Survey

V a :

Wind velocity

WHO:

World Health Organization

References

  • ABS. (2008). ABS 3222.0 Population projections, Australia 2006 to 2101. Retrieved from http://www.abs.gov.au

  • ABS. (2013). Feature article: capital cities: past, present and future. Retrieved from http://www.abs.gov.au

  • ABS. (2019). Australian Bureau of Statistics. Retrieved from https://www.abs.gov.au/

  • Akbari, H., Cartalis, C., Kolokotsa, D., Muscio, A., Pisello, A. L., Rossi, F., … Zinzi, M. (2016). Local climate change and urban heat island mitigation techniques – The state of the art. Journal of Civil Engineering and Management, 22(1), 1–16. https://doi.org/10.3846/13923730.2015.1111934

    Article  Google Scholar 

  • Akompab, D. A., Bi, P., Williams, S., Grant, J., Walker, I. A., & Augoustinos, M. (2012). Awareness of and attitudes towards heat waves within the context of climate change among a cohort of residents in Adelaide, Australia. International Journal of Environmental Research and Public Health, 10(1), 1–17. https://doi.org/10.3390/ijerph10010001

    Article  Google Scholar 

  • Aleksandrowicz, O., Vuckovic, M., Kiesel, K., & Mahdavi, A. (2017). Current trends in urban heat island mitigation research: Observations based on a comprehensive research repository. Urban Climate, 21, 1–26. https://doi.org/10.1016/j.uclim.2017.04.002

    Article  Google Scholar 

  • Algretawee, H., Rayburg, S., & Neave, M. (2019). Estimating the effect of park proximity to the central of Melbourne city on Urban Heat Island (UHI) relative to Land Surface Temperature (LST). Ecological Engineering, 138, 374–390.

    Article  Google Scholar 

  • Auliciems, A. (1981). Towards a psycho-physiological model of thermal perception. International Journal of Biometeorology, 25(2), 109–122.

    Article  Google Scholar 

  • Baker, N., & Standeven, M. (1996). Thermal comfort for free-running buildings. Energy and Buildings, 23(3), 175–182.

    Article  Google Scholar 

  • Biddle, T., Bertoia, T., Greaves, S., & Stopher, P. (2006). The costs of infill versus greenfield development–A review of recent literature. Paper presented at the 29th Australian Transport Research Forum, Gold Coast, Queensland, Australia.

    Google Scholar 

  • Block, A. H., Livesley, S. J., & S.G., W. (2012). Responding to the Urban Heat Island: A Review of the Potential of Green Infrastructure. Retrieved from Melbourne, Australia.

    Google Scholar 

  • Bosomworth, K., Trundle, A., & McEvoy, D. (2013). Responding to the urban heat island: A policy and institutional analysis. Victorian Centre for Climate Change Adaptation Research.

    Google Scholar 

  • Brager, G. S., & de Dear, R. J. (1998). Thermal adaptation in the built environment: A literature review. Energy and Buildings, 27(1), 83–96. https://doi.org/10.1016/S0378-7788(97)00053-4

    Article  Google Scholar 

  • Bronfenbrenner, U. (1992). Ecological systems theory. In R. Vasta (Ed.), Six theories of child development (pp. 187–249). Jessica Kingsley Publishers.

    Google Scholar 

  • C2ES. (2017). Resilience strategies for extreme heat. Retrieved from https://bit.ly/2BHxXOY

  • Chen, D., Wang, X., Khoo, Y., Thatcher, M., Lin, B., Ren, Z., … Barnett, G. (2013). Assessment of urban Heat Island and mitigation by urban green coverage. In A. Khare & T. Beckman (Eds.), Mitigating climate change (pp. 247–257). Springer Berlin Heidelberg.

    Chapter  Google Scholar 

  • Chen, X., Yang, H., & Lu, L. (2015). A comprehensive review on passive design approaches in green building rating tools. Renewable and Sustainable Energy Reviews, 50, 1425–1436.

    Article  Google Scholar 

  • Cheremisinoff, N. P., Rosenfeld, P., & Davletshin, A. R. (2008). Chapter One – A primer on responsible environmental management. In N. P. Cheremisinoff, P. Rosenfeld, & A. R. Davletshin (Eds.), Responsible care (pp. 1–39). Gulf Publishing Company.

    Google Scholar 

  • Coates, L., Haynes, K., O’Brien, J., McAneney, J., & De Oliveira, F. D. (2014). Exploring 167 years of vulnerability: An examination of extreme heat events in Australia 1844–2010. Environmental Science Policy, 42, 33–44.

    Article  Google Scholar 

  • Corburn, J. (2009). Cities, climate change and urban Heat Island mitigation: Localising global environmental science. Urban Studies, 46(2), 413–427. https://doi.org/10.1177/0042098008099361

    Article  Google Scholar 

  • Coutts, A. M., Beringer, J., & Tapper, N. J. (2007). Impact of increasing urban density on local climate: Spatial and temporal variations in the surface energy balance in Melbourne, Australia. Journal of Applied Meteorology and Climatology, 46(4), 477–493.

    Article  Google Scholar 

  • Dalezios, N. R., & Eslamian, S. (2017). Drought Assessment and Management for Heat Waves Monitoring. In S. Eslamian & F. Eslamian (Eds.), Handbook of drought and water scarcity (Vol. 3, pp. 235–260).

    Chapter  Google Scholar 

  • Deilami, K., & Kamruzzaman, M. (2017). Modelling the urban heat island effect of smart growth policy scenarios in Brisbane. Land Use Policy, 64, 38–55. https://doi.org/10.1016/j.landusepol.2017.02.027

    Article  Google Scholar 

  • Deilami, K., Kamruzzaman, M., & Hayes, J. F. (2016). Correlation or causality between land cover patterns and the urban heat island effect? Evidence from Brisbane, Australia. Remote Sensing, 8(9), 1–28.

    Article  Google Scholar 

  • Deilami, K., Mohd, S., BIN, M. I., & Atashpareh, N. (2012). An accuracy assessment of ASTER stereo images-derived digital elevation model by using rational polynomial coefficient model. American Journal of Scientific Research, 55, 128–135.

    Google Scholar 

  • Deilami, K., Rudner, J., Butt, A., MacLeod, T., Williams, G., Romeijn, H., & Amati, M. (2020). Allowing users to benefit from tree shading: Using a smartphone app to allow adaptive route planning during extreme heat. Forests, 11(9), 998. Retrieved from https://www.mdpi.com/1999-4907/11/9/998

    Article  Google Scholar 

  • Eleftheriou, D., Kiachidis, K., Kalmintzis, G., Kalea, A., Bantasis, C., Koumadoraki, P., … Gemitzi, A. (2018). Determination of annual and seasonal daytime and nighttime trends of MODIS LST over Greece – Climate change implications. Science of the Total Environment, 616-617, 937–947. https://doi.org/10.1016/j.scitotenv.2017.10.226

    Article  Google Scholar 

  • Enríquez, E., Fuertes, V., Cabrera, M. J., Seores, J., Muñoz, D., & Fernández, J. F. (2017). New strategy to mitigate urban heat island effect: Energy saving by combining high albedo and low thermal diffusivity in glass ceramic materials. Solar Energy, 149, 114–124. https://doi.org/10.1016/j.solener.2017.04.011

    Article  Google Scholar 

  • EPA. (2014). Smart growth and economic success: Investing in infill development.

    Google Scholar 

  • esa. (2019). Land surface temperature. Retrieved from https://bit.ly/2ppv8Qd

  • Fallmann, J., Forkel, R., & Emeis, S. (2016). Secondary effects of urban heat island mitigation measures on air quality. Atmospheric Evironment, 125, 199–211.

    Article  Google Scholar 

  • Fountain, M., Brager, G., & de Dear, R. (1996). Expectations of indoor climate control. Energy and Buildings, 24(3), 179–182.

    Article  Google Scholar 

  • Fu, P., & Weng, Q. (2018). Variability in annual temperature cycle in the urban areas of the United States as revealed by MODIS imagery. ISPRS Journal of Photogrammetry and Remote Sensing, 146, 65–73. https://doi.org/10.1016/j.isprsjprs.2018.09.003

    Article  Google Scholar 

  • Gartland, L. M. (2012). Heat islands: Understanding and mitigating heat in urban areas. Routledge.

    Book  Google Scholar 

  • Giuliani, R., Magnanini, E., Fragassa, C., & Nerozzi, F. (2000). Ground monitoring the light–shadow windows of a tree canopy to yield canopy light interception and morphological traits. Plant, Cell & Environment, 23(8), 783–796. https://doi.org/10.1046/j.1365-3040.2000.00600.x

    Article  Google Scholar 

  • Gong, F.-Y., Zeng, Z.-C., Zhang, F., Li, X., Ng, E., & Norford, L. K. (2018). Mapping sky, tree, and building view factors of street canyons in a high-density urban environment. Building and Environment, 134, 155–167. https://doi.org/10.1016/j.buildenv.2018.02.042

    Article  Google Scholar 

  • Guha, S., Govil, H., Dey, A., & Gill, N. (2018). Analytical study of land surface temperature with NDVI and NDBI using Landsat 8 OLI and TIRS data in Florence and Naples city, Italy. European Journal of Remote Sensing, 51(1), 667–678.

    Article  Google Scholar 

  • Gunawardena, K. R., Wells, M. J., & Kershaw, T. (2017). Utilising green and bluespace to mitigate urban heat island intensity. Science of the Total Environment, 584-585, 1040–1055. https://doi.org/10.1016/j.scitotenv.2017.01.158

    Article  Google Scholar 

  • Halawa, E., & van Hoof, J. (2012). The adaptive approach to thermal comfort: A critical overview. Energy and Buildings, 51, 101–110. https://doi.org/10.1016/j.enbuild.2012.04.011

    Article  Google Scholar 

  • Heaviside, C., Macintyre, H., & Vardoulakis, S. (2017). The urban heat island: Implications for health in a changing environment. Current Environmental Health Reports, 4(3), 296–305.

    Article  Google Scholar 

  • Hitchings, R. (2007). Geographies of embodied outdoor experience and the arrival of the patio heater. Area, 39(3), 340–348.

    Article  Google Scholar 

  • Höppe, P. (1999). The physiological equivalent temperature – A universal index for the biometeorological assessment of the thermal environment. International Journal of Biometeorology, 43(2), 71–75.

    Article  Google Scholar 

  • Hsieh, C.-M., Li, J.-J., Zhang, L., & Schwegler, B. (2018). Effects of tree shading and transpiration on building cooling energy use. Energy and Buildings, 159, 382–397. https://doi.org/10.1016/j.enbuild.2017.10.045

    Article  Google Scholar 

  • Iping, A., Kidston-Lattari, J., Simpson-Young, A., Duncan, E., & McManus, P. (2019). (Re)presenting urban heat islands in Australian cities: A study of media reporting and implications for urban heat and climate change debates. Urban Climate, 27, 420–429. https://doi.org/10.1016/j.uclim.2018.12.014

    Article  Google Scholar 

  • Johansson, E., Thorsson, S., Emmanuel, R., & Krüger, E. (2014). Instruments and methods in outdoor thermal comfort studies–The need for standardisation. Urban Climate, 10(2), 346–366.

    Article  Google Scholar 

  • Kalafatis, S. E., Lemos, M. C., Lo, Y.-J., & Frank, K. A. (2015). Increasing information usability for climate adaptation: The role of knowledge networks and communities of practice. Global Environmental Change, 32, 30–39. https://doi.org/10.1016/j.gloenvcha.2015.02.007

    Article  Google Scholar 

  • Kamruzzaman, M., Deilami, K., & Yigitcanlar, T. (2018). Investigating the urban heat island effect of transit oriented development in Brisbane. Journal of Transport Geography, 66, 116–124. https://doi.org/10.1016/j.jtrangeo.2017.11.016

    Article  Google Scholar 

  • Khadka, C., & Vacik, H. (2012). Comparing a top-down and bottom-up approach in the identification of criteria and indicators for sustainable community forest management in Nepal. Forestry: An International Journal of Forest Research, 85(1), 145–158.

    Article  Google Scholar 

  • Khandelwal, S., Goyal, R., Kaul, N., & Mathew, A. (2018). Assessment of land surface temperature variation due to change in elevation of area surrounding Jaipur, India. The Egyptian Journal of Remote Sensing and Space Science, 21(1), 87–94.

    Article  Google Scholar 

  • Krüger, E., Tamura, C. A., Schweiker, M., Wagner, A., & Bröde, P. (2015). Short-term acclimatisation effects in an outdoor comfort study. Paper presented at the the 9th International Conference on Urban Climate jointly with 12th Symposium on the Urban Environment, France.

    Google Scholar 

  • Kuuluvainen, T., & Pukkala, T. (1987). Effect of crown shape and tree distribution on the spatial distribution of shade. Agricultural and Forest Meteorology, 40(3), 215–231. https://doi.org/10.1016/0168-1923(87)90060-8

    Article  Google Scholar 

  • Levina, E., & Tirpak, D. (2006). Key adaptation concepts and terms. Retrieved from Paris, France: https://www.oecd.org/environment/cc/36278739.pdf

  • Livada, I., Synnefa, A., Haddad, S., Paolini, R., Garshasbi, S., Ulpiani, G., … Santamouris, M. (2019). Time series analysis of ambient air-temperature during the period 1970–2016 over Sydney, Australia. Science of the Total Environment, 648, 1627–1638.

    Article  Google Scholar 

  • Ma, Y., Kuang, Y., & Huang, N. (2010). Coupling urbanisation analyses for studying urban thermal environment and its interplay with biophysical parameters based on TM/ETM+ imagery. International Journal of Applied Earth Observation and Geoinformation, 12(2), 110–118. https://doi.org/10.1016/j.jag.2009.12.002

    Article  Google Scholar 

  • Magli, S., Lodi, C., Lombroso, L., Muscio, A., & Teggi, S. (2015). Analysis of the urban heat island effects on building energy consumption. International Journal of Energy and Environmental Engineering, 6(1), 91–99. https://doi.org/10.1007/s40095-014-0154-9

    Article  Google Scholar 

  • Mahdavi, A., Kiesel, K., & Vuckovic, M. (2016). Methodologies for UHI analysis. In F. Musco (Ed.), Counteracting urban heat island effects in a global climate change scenario (pp. 71–91). Springer.

    Chapter  Google Scholar 

  • Matthews, T., & Marston, G. (2019). How environmental storylines shaped regional planning policies in South East Queensland, Australia: A long-term analysis. Land Use Policy, 85, 476–484.

    Article  Google Scholar 

  • McIntyre, D. (1980). Indoor climate. Applied science publishers.

    Google Scholar 

  • McPherson, G., Simpson, J. R., Peper, P. J., Maco, S. E., & Xiao, Q. (2005). Municipal forest benefits and costs in five US cities. Journal of Forestry, 103(8), 411–416.

    Google Scholar 

  • Mekonnen, A. D., & Gorsevski, P. V. (2015). A web-based participatory GIS (PGIS) for offshore wind farm suitability within Lake Erie, Ohio. Renewable and Sustainable Energy Reviews, 41, 162–177. https://doi.org/10.1016/j.rser.2014.08.030

    Article  Google Scholar 

  • Meng, Y., & Malczewski, J. (2010). Web-PPGIS usability and public engagement: A case study in Canmore, Alberta, Canada. Journal of the Urban & Regional Information Systems Association, 22(1), 55–64.

    Google Scholar 

  • Miles, V., & Esau, I. (2017). Seasonal and spatial characteristics of urban Heat Islands (UHIs) in Northern West Siberian cities. Remote Sensing, 9(10), 989. Retrieved from https://www.mdpi.com/2072-4292/9/10/989

    Article  Google Scholar 

  • Moll, G., & Ebenreck, S. (1989). Shading our cities: A resource guide for urban and community forests. Island Press.

    Google Scholar 

  • Morakinyo, T. E., & Lam, Y. F. (2016). Simulation study on the impact of tree-configuration, planting pattern and wind condition on street-canyon’s micro-climate and thermal comfort. Building and Environment, 103, 262–275. https://doi.org/10.1016/j.buildenv.2016.04.025

    Article  Google Scholar 

  • Morini, E., Touchaei, A., Castellani, B., Rossi, F., & Cotana, F. (2016). The impact of albedo increase to mitigate the urban Heat Island in Terni (Italy) using the WRF model. Sustainability, 8(10), 999. Retrieved from http://www.mdpi.com/2071-1050/8/10/999

    Article  Google Scholar 

  • Napoli, M., Massetti, L., Brandani, G., Petralli, M., & Orlandini, S. (2016). Modeling tree shade effect on urban ground surface temperature. Journal of Environmental Quality, 45(1), 146–156. https://doi.org/10.2134/jeq2015.02.0097

    Article  Google Scholar 

  • Neave, M., Rayburg, S., & AL-Obaidi, I. H. (2016). Winter urban heat island magnitudes of major Australian cities. International Journal of GEOMATE, 11(24), 2322–2327.

    Google Scholar 

  • Newman, G., Wiggins, A., Crall, A., Graham, E., Newman, S., & Crowston, K. (2012). The future of citizen science: Emerging technologies and shifting paradigms. Frontiers in Ecology and the Environment, 10(6), 298–304.

    Article  Google Scholar 

  • Nikolopoulou, M., & Steemers, K. (2003). Thermal comfort and psychological adaptation as a guide for designing urban spaces. Energy and Buildings, 35(1), 95–101.

    Article  Google Scholar 

  • O’Malley, C., Piroozfar, P., Farr, E. R., & Pomponi, F. (2015). Urban Heat Island (UHI) mitigating strategies: A case-based comparative analysis. Sustainable Cities and Society, 19, 222–235.

    Article  Google Scholar 

  • Oke, T. R. (1976). The distinction between canopy and boundary-layer urban heat islands. Atmosphere, 14(4), 268–277. https://doi.org/10.1080/00046973.1976.9648422

    Article  Google Scholar 

  • Peel, M. C., Finlayson, B. L., & McMahon, T. A. (2007). Updated world map of the Köppen-Geiger climate classification. Hydrology and Earth System Sciences, 11(5), 1633–1644.

    Article  Google Scholar 

  • Pissourios, I. (2014). Top-down and bottom-up urban and regional planning: Towards a framework for the use of planning standards. European Spatial Research and Policy, 21. https://doi.org/10.2478/esrp-2014-0007

  • Rajagopalan, P., Santamouris, M., & Andamon, M. (2017). Public engagement in urban microclimate research. Paper presented at the Back to the future: The next 50 years. 51st International Conference of the Architectural Science Association, Adelaide, Australia.

    Google Scholar 

  • Rehan, R. M. (2016). Cool city as a sustainable example of heat island management case study of the coolest city in the world. HBRC Journal, 12(2), 191–204. https://doi.org/10.1016/j.hbrcj.2014.10.002

    Article  Google Scholar 

  • Ren, C., Yang, R., Cheng, C., Xing, P., Fang, X., Zhang, S., … Ng, E. (2018). Creating breathing cities by adopting urban ventilation assessment and wind corridor plan – The implementation in Chinese cities. Journal of Wind Engineering and Industrial Aerodynamics, 182, 170–188. https://doi.org/10.1016/j.jweia.2018.09.023

    Article  Google Scholar 

  • Rogers, C. D., Gallant, A. J., & Tapper, N. J. (2019). Is the urban heat island exacerbated during heatwaves in southern Australian cities? Theoretical and Applied Climatology, 137(1–2), 441–457.

    Article  Google Scholar 

  • Roth, M. (2013). Urban Heat Islands. In H. J. S. Fernando (Ed.), Handbook of environmental fluid dynamics (Vol. 2). CRC Press/Taylor & Francis.

    Google Scholar 

  • Roy, S., Byrne, J., & Pickering, C. (2012). A systematic quantitative review of urban tree benefits, costs, and assessment methods across cities in different climatic zones. Urban Forestry & Urban Greening, 11(4), 351–363. https://doi.org/10.1016/j.ufug.2012.06.006

    Article  Google Scholar 

  • Sailor, D. J., Resh, K., & Segura, D. (2006). Field measurement of albedo for limited extent test surfaces. Solar Energy, 80(5), 589–599. https://doi.org/10.1016/j.solener.2005.03.012

    Article  Google Scholar 

  • Sanusi, R., Johnstone, D., May, P., & Livesley, S. J. (2017). Microclimate benefits that different street tree species provide to sidewalk pedestrians relate to differences in Plant Area Index. Landscape and Urban Planning, 157, 502–511. https://doi.org/10.1016/j.landurbplan.2016.08.010

    Article  Google Scholar 

  • Shatu, F. M., Kamruzzaman, M., & Deilami, K. (2014). Did Brisbane grow smartly? Drivers of city growth 1991–2001 and lessons for current policies. SAGE Open, 4(4). https://doi.org/10.1177/2158244014551713

  • Shooshtarian, S. (2015). Socio-economic. Factors for the Perception of Outdoor Thermal Environments: Towards Climate-sensitive Urban Design The Global Built Environment Review, 9(3), 39–53.

    Google Scholar 

  • Shooshtarian, S., Lam, C. K. C., & Kenawy, I. (2020). Outdoor thermal comfort assessment: A review on thermal comfort research in Australia. Building and Environment, 177(106917), 1–13. https://doi.org/10.1016/j.buildenv.2020.106917

    Article  Google Scholar 

  • Shooshtarian, S., & Rajagopalan, P. (2017). Study of thermal satisfaction in an Australian educational precinct. Building and Environment, 123, 119–132.

    Article  Google Scholar 

  • Shooshtarian, S., Rajagopalan, P., & Sagoo, A. (2018). A comprehensive review of thermal adaptive strategies in outdoor spaces. Sustainable Cities and Society, 41, 647–665.

    Article  Google Scholar 

  • Shooshtarian, S., Rajagopalan, P., & Wakefield, R. (2018). Effect of seasonal changes on usage patterns and behaviours in educational precinct in Melbourne. Urban Climate, 26, 133–148.

    Article  Google Scholar 

  • Shooshtarian, S., & Ridley, I. (2016a). Determination of acceptable thermal range in outdoor built environments by various methods. Smart and Sustainable Built Environment, 5(4), 352–371.

    Article  Google Scholar 

  • Shooshtarian, S., & Ridley, I. (2016b). The effect of individual and social environments on the users thermal perceptions of educational urban precincts. Sustainable Cities and Society, 26, 119–133. https://doi.org/10.1016/j.scs.2016.06.005

    Article  Google Scholar 

  • Shooshtarian, S., & Ridley, I. (2017). The effect of physical and psychological environments on the users thermal perceptions of educational urban precincts. Building and Environment, 115, 182–198.

    Article  Google Scholar 

  • Sieber, R. (2006). Public participation geographic information systems: A literature review and framework. Annals of the Association of American Geographers, 96(3), 491–507. https://doi.org/10.1111/j.1467-8306.2006.00702.x

    Article  Google Scholar 

  • Simmons, B. A., Law, E. A., Marcos-Martinez, R., Bryan, B. A., McAlpine, C., & Wilson, K. A. (2018). Spatial and temporal patterns of land clearing during policy change. Land Use Policy, 75, 399–410. https://doi.org/10.1016/j.landusepol.2018.03.049

    Article  Google Scholar 

  • Smajgl, A., & Carlin, G. (2009). Simulating impacts of energy prices on poverty in East Kalimantan, Indonesia. Paper presented at the Combined IMACS World Congress/Modelling and Simulation Society-of-Australia-and-New-Zealand (MSSANZ)/18th Biennial Conference on Modelling and Simulation MSSANZ, Cairns, Carins, Australia.

    Google Scholar 

  • Soltani, A., & Sharifi, E. (2017). Daily variation of urban heat island effect and its correlations to urban greenery: A case study of Adelaide. Frontiers of Architectural Research, 6(4), 529–538. https://doi.org/10.1016/j.foar.2017.08.001

    Article  Google Scholar 

  • Streutker, D. R. (2002). A remote sensing study of the urban heat island of Houston, Texas. International Journal of Remote Sensing, 23(13), 2595–2608. https://doi.org/10.1080/01431160110115023

    Article  Google Scholar 

  • Stroppiana, D., Antoninetti, M., & Brivio, P. A. (2014). Seasonality of MODIS LST over Southern Italy and correlation with land cover, topography and solar radiation. European Journal of Remote Sensing, 47(1), 133–152.

    Article  Google Scholar 

  • Takács, Á., Kiss, M., Hof, A., Tanács, E., Gulyás, Á., & Kántor, N. (2016). Microclimate modification by urban shade trees – An integrated approach to aid ecosystem service based decision-making. Procedia Environmental Sciences, 32, 97–109. https://doi.org/10.1016/j.proenv.2016.03.015

    Article  Google Scholar 

  • The State Government of Victoria. (2014). Plan Melbourne, metropolitan planning strategy. Retrieved from Melbourne.

    Google Scholar 

  • Trumbull, D. J., Bonney, R., Bascom, D., & Cabral, A. (2000). Thinking scientifically during participation in a citizen-science project. Science Education, 84(2), 265–275.

    Article  Google Scholar 

  • United Nation Habitat. (2007). Inclusive and sustainable urban planning: A guide for municipalities. In UN-HABITAT, United Nation Human Settlements Programme Nairobi.

    Google Scholar 

  • USGS, & NASA. (2019). AppEEARS. Retrieved from https://lpdaacsvc.cr.usgs.gov/appeears/

  • VDI 3787. (2008). Methods for the Human Biometeorological Evaluation of Climate and Air Quality for Urban and Regional Planning at Regional Level; Part I: Climate (p. 29). Beuth Verlag.

    Google Scholar 

  • Victorian Government. (2008). Melbourne 2030; A planning update -Melbourne @5 million. Vic Department of Planning and Community Development, Australia: State Government of Victoria.

    Google Scholar 

  • Voogt, J. (2007). How researchers measure urban heat islands. Paper presented at the United States Environmental Protection Agency (EPA), State and Local Climate and Energy Program, Heat Island Effect, Urban Heat Island Webcasts and Conference Calls.

    Google Scholar 

  • Walton, D., Dravitzki, V., & Donn, M. (2007). The relative influence of wind, sunlight and temperature on user comfort in urban outdoor spaces. Building and Environment, 42(9), 3166–3175.

    Article  Google Scholar 

  • Wan, Z. (2006). MODIS land surface temperature products users’ guide. Institute for Computational Earth System Science, University of California.

    Google Scholar 

  • Wan, Z. (2008). New refinements and validation of the MODIS land-surface temperature/emissivity products. Remote Sensing of Environment, 112(1), 59–74. https://doi.org/10.1016/j.rse.2006.06.026

    Article  Google Scholar 

  • WHO. (1982). Provisional guidelines on standard international age classification. In Department of International Economic and Social Affairs. Series M: World Health Organization.

    Google Scholar 

  • Wilkinson, S. J., & Reed, R. (2009). Green roof retrofit potential in the central business district. Property Management, 27(5), 284–301.

    Article  Google Scholar 

  • Williams, R. (1995). Field investigation of thermal comfort, environmental satisfaction and perceived control levels in UK office buildings. Paper presented at the Proceedings of the 4th International Conference Healthy Buildings Milan, Italy.

    Google Scholar 

  • Yamamoto, Y. (2006). Measures to mitigate urban heat islands (1349–3663). Retrieved from. Quarterly Review, N. 18, 6–83

    Google Scholar 

  • Zarate-Valdez, J. L., Metcalf, S., Stewart, W., Ustin, S. L., & Lampinen, B. (2015). Estimating light interception in tree crops with digital images of canopy shadow. Precision Agriculture, 16(4), 425–440. https://doi.org/10.1007/s11119-015-9387-8

    Article  Google Scholar 

  • Zhang, X., Zhong, T., Feng, X., & Wang, K. (2009). Estimation of the relationship between vegetation patches and urban land surface temperature with remote sensing. International Journal of Remote Sensing, 30(8), 2105–2118.

    Article  Google Scholar 

  • Zhao, D., Xie, D., Zhou, H., Jiang, H., & An, S. (2012). Estimation of leaf area index and plant area index of a submerged macrophyte canopy using digital photography. PLoS One, 7(12), e51034. https://doi.org/10.1371/journal.pone.0051034

    Article  Google Scholar 

  • Zhou, D., Xiao, J., Bonafoni, S., Berger, C., Deilami, K., Zhou, Y., … Sobrino, J. A. (2018). Satellite remote sensing of surface urban Heat Islands: Progress, challenges, and perspectives. Remote Sensing, 11(1).

    Google Scholar 

  • Zhou, W., Huang, G., & Cadenasso, M. L. (2011). Does spatial configuration matter? Understanding the effects of land cover pattern on land surface temperature in urban landscapes. Landscape and Urban Planning, 102(1), 54–63. https://doi.org/10.1016/j.landurbplan.2011.03.009

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaveh Deilami .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Deilami, K., Shooshtarian, S., Rudner, J., Butt, A., Amati, M. (2022). Resilience and Adaptation Strategies for Urban Heat at Regional, City and Local Scales. In: Eslamian, S., Eslamian, F. (eds) Disaster Risk Reduction for Resilience. Springer, Cham. https://doi.org/10.1007/978-3-030-72196-1_8

Download citation

Publish with us

Policies and ethics