Skip to main content

Damped Oscillation in the Cyanobacterial Clock System

  • Chapter
  • First Online:
Circadian Rhythms in Bacteria and Microbiomes

Abstract

Although chronobiologists have postulated self-sustainability in circadian clocks, we report here two examples of damped oscillation in the cyanobacterial circadian system. First, low temperature transformed the self-sustained KaiC phosphorylation rhythm into damped oscillations. Second, deletion of the kaiA gene showed damped oscillation in the bioluminescent rhythm. These damped rhythms resonated with periodical environmental changes and then recovered their oscillation amplitudes. Numerical experiments confirmed that biochemical networks with the characteristic of self-sustained oscillation are rare. Evolutionary searches revealed that photoperiodism might contribute to evolving the self-sustainability of circadian rhythms. Although damped oscillators have not received substantial chronobiological analyses, our findings suggest that the circadian clock can easily transform into a damped oscillator by environmental or genetic perturbation and might function as a semi-clock system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Using the terms of bifurcation theory, conversion of a 5-node, non-self-sustained (or self-sustained) oscillator into a 6-node, self-sustained (or non-self-sustained) oscillator can be described as follows: We have a 6-node system and two control parameters that represent intensity of regulations from node 5 to 6 and from 6 to 4. Some type of bifurcation occurs as the parameter values are increased from 0 (no regulation) toward large values.

Abbreviations

DD:

constant darkness

LD:

light dark cycle

LL:

constant light

PTO:

post-transcriptional oscillator

SNIC:

saddle-node bifurcation on an invariant circle

TTFL:

transcriptional-translational feedback loop

References

  • Bieniawska Z, Espinoza C, Schlereth A et al (2008) Disruption of the Arabidopsis circadian clock is responsible for extensive variation in the cold-responsive transcriptome. Plant Physiol 147:263–279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bünning E (1931) Untersuchungen über die autonomen tagesperiodischen Bewungen der Primärblätter von Phaseolus multiflorus. Jahrb Wiss Bot 75:439–480

    Google Scholar 

  • Bünning E (1960) Opening address: biological clocks. Cold Spring Harb Symp Quant Biol 25:1–9

    Article  Google Scholar 

  • Bünning E (1964) The physiological clock: endogenous diurnal rhythms and biological chronometry. Springer-Verlag, Berlin

    Book  Google Scholar 

  • Bünning E (1975) Wilhelm Pfeffer: Apotheker, chemiker, botaniker, physiologe 1845–1920. English edition: Bünning E (1989). Ahead of his time: Wilhelm Pfeffer, early advances in plant biology (trans: Pfeffer HW), Carleton University Press, Ottawa

    Google Scholar 

  • Bünning E (1977) Fifty years of research in the wake of Wilhelm Pfeffer. Annu Rev Plant Physiol 28:1–23

    Article  Google Scholar 

  • Bünning E, Stern K (1929) Ãœber die tagesperiodischen Bewegungen der Primärblätter von Phaseolus multiflorus I. Der Einfluss der Temperatur auf die Bewegungen. Ber d bot Ges 47:565–584

    Google Scholar 

  • Darwin C, Darwin F (1880) The power of movement in plants. John Murray, London

    Google Scholar 

  • Dodd AN, Salathia N, Hall A et al (2005) Plant circadian clocks increase photosynthesis, growth, survival, and competitive advantage. Science 309:630–633

    Article  CAS  PubMed  Google Scholar 

  • Dvornyk V, Vinogradova O, Nevo E (2003) Origin and evolution of circadian clock genes in prokaryotes. Proc Natl Acad Sci U S A 100:2495–2500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Francis CD, Sargent ML (1979) Effects of temperature perturbations on circadian conidiation in Neurospora. Plant Physiol 64:1000–1004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gould PD, Domijan M, Greenwood M et al (2018) Coordination of robust single cell rhythms in the Arabidopsis circadian clock via spatial waves of gene expression. elife 7:e31700

    Article  PubMed  PubMed Central  Google Scholar 

  • Grobbelaar N, Huang T, Lin H et al (1986) Dinitrogen-fixing endogenous rhythm in Synechococcus RF-1. FEMS Microbiol Lett 37:173–177

    Article  CAS  Google Scholar 

  • Guckenheimer J, Holmes PJ (1983) Nonlinear oscillations, dynamical systems, and bifurcations of vector fields, applied mathematical sciences, vol 42. Springer-Verlag, New York

    Book  Google Scholar 

  • Hastings JW, Sweeney BM (1957) On the mechanism of temperature independence in a biological clock. Proc Natl Acad Sci U S A 43:804–811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hatakeyama TS, Kaneko K (2012) Generic temperature compensation of biological clocks by autonomous regulation of catalyst concentration. Proc Natl Acad Sci U S A 109:8109–8114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holtzendorff J, Partensky F, Mella D et al (2008) Genome streamlining results in loss of robustness of the circadian clock in the marine cyanobacterium Prochlorococcus marinus PCC 9511. J Biol Rhythm 23:187–199

    Article  CAS  Google Scholar 

  • Ishiura M, Kutsuna S, Aoki S et al (1998) Expression of a gene cluster kaiABC as a circadian feedback process in cyanobacteria. Science 281:1519–1523

    Article  CAS  PubMed  Google Scholar 

  • Ito H, Kageyama H, Mutsuda M et al (2007) Autonomous synchronization of the circadian KaiC phosphorylation rhythm. Nat Struct Mol Biol 14:1084–1088

    Article  CAS  PubMed  Google Scholar 

  • Izhikevich EM (2007) Dynamical systems in neuroscience: the geometry of excitability and bursting. MIT Press, Cambridge

    Google Scholar 

  • Johnson CH, Zhao C, Xu Y et al (2017) Timing the day: what makes bacterial clocks tick? Nat Rev Microbiol 15:232–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawamoto N, Ito H, Tokuda IT et al (2020) Damped circadian oscillation in the absence of KaiA in Synechococcus. Nat Commun 11:2242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kitayama Y, Nishiwaki T, Terauchi K et al (2008) Dual KaiC-based oscillations constitute the circadian system of cyanobacteria. Genes Dev 22:1513–1521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kobayashi Y, Shibata T, Kuramoto Y et al (2010) Evolutionary design of oscillatory genetic networks. Eur Phys J B 76:167–178

    Article  CAS  Google Scholar 

  • Kondo T, Tsudzuki T (1980) Phase progress under low temperature treatment of the potassium uptake rhythm in a duckweed, Lemna gibba G3. Plant Cell Physiol 21:95–103

    Article  CAS  Google Scholar 

  • Kondo T, Strayer CA, Kulkarni RD et al (1993) Circadian rhythms in prokaryotes: luciferase as a reporter of circadian gene expression in cyanobacteria. Proc Natl Acad Sci U S A 90:5672–5676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lambert G, Chew J, Rust MJ (2016) Costs of clock-environment misalignment in individual cyanobacterial cells. Biophys J 111:883–891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma P, Mori T, Zhao C et al (2016) Evolution of KaiC-dependent timekeepers: a proto-circadian timing mechanism confers adaptive fitness in the purple bacterium Rhodopseudomonas palustris. PLoS Genet 12:e1005922

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Martino-Catt S, Ort DR (1992) Low temperature interrupts circadian regulation of transcriptional activity in chilling-sensitive plants. Proc Natl Acad Sci U S A 89:3731–3735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mihalcescu I, Hsing W, Leibler S (2004) Resilient circadian oscillator revealed in individual cyanobacteria. Nature 430:81–85

    Article  CAS  PubMed  Google Scholar 

  • Moye M, Diekman C (2018) Data assimilation methods for neuronal state and parameter estimation. J Math Neurosci 8:11

    Article  PubMed  PubMed Central  Google Scholar 

  • Murayama Y, Kori H, Oshima C et al (2017) Low temperature nullifies the circadian clock in cyanobacteria through Hopf bifurcation. Proc Natl Acad Sci U S A 114:5641–5646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagoshi E, Saini C, Bauer C et al (2004) Circadian gene expression in individual fibroblasts cell-autonomous and self-sustained oscillators pass time to daughter cells. Cell 119:693–705

    Article  CAS  PubMed  Google Scholar 

  • Nakajima M, Imai K, Ito H et al (2005) Reconstitution of circadian oscillation of cyanobacterial KaiC phosphorylation in vitro. Science 308:414–415

    Article  CAS  PubMed  Google Scholar 

  • Njus D, McMurry L, Hastings JW (1977) Conditionality of circadian rhythmicity: synergistic action of light and temperature. J Comp Physiol 117:335–344

    Article  Google Scholar 

  • Ouyang Y, Andersson CR, Kondo T et al (1998) Resonating circadian clocks enhance fitness in cyanobacteria. Proc Natl Acad Sci U S A 95:8660–8664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pfeffer W (1915) Beiträge zur Kenntnis der Entstehung der Schlafbewegungen. Ber. d. math.-phys. KI. d. Koenigl. Sächs. Gesellsch. d. Wissensch 34 (I–VI):1–154

    Google Scholar 

  • Pittayakanchit W, Lu Z, Chew J et al (2018) Biophysical clocks face a trade-off between internal and external noise resistance. elife 7:e37624

    Article  PubMed  PubMed Central  Google Scholar 

  • Pittendrigh CS (1976) Circadian clocks: what are they? In: Hastings JW, Schweiger HG (eds) The molecular basis of circadian rhythms. Abakon Verlagsgesellschaft, Berlin, pp 11–48

    Google Scholar 

  • Ramos A, Pérez-Solís E, Ibáñez C et al (2005) Winter disruption of the circadian clock in chestnut. Proc Natl Acad Sci U S A 102:7037–7042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roberts SKDF (1962) Circadian activity rhythms in cockroaches. II Entrainment and phase shifting. J Cell Comp Physiol 59:175–186

    Article  Google Scholar 

  • Roy S, Letourneau L, Morse D (2014) Cold-induced cysts of the photosynthetic dinoflagellate Lingulodinium polyedrum have an arrested circadian bioluminescence rhythm and lower levels of protein phosphorylation. Plant Physiol 164:966–977

    Article  CAS  PubMed  Google Scholar 

  • Strogatz SH (1994) Nonlinear dynamics and chaos: with applications to physics, biology, chemistry, and engineering. Addison-Wesley, Reading, MA

    Google Scholar 

  • Sweeney B (1987) Rhythmic phenomena in plants. Academic Press, San Diego, CA

    Google Scholar 

  • Tazawa H (2009) Biological clock coming out from beans: the story of Erwin Bünning. (in Japanese) Gakkai Shuppan, Tokyo

    Google Scholar 

  • Ukai H, Kobayashi TJ, Nagano M et al (2007) Melanopsin-dependent photo-perturbation reveals desynchronization underlying the singularity of mammalian circadian clocks. Nat Cell Biol 9:1327–1334

    Article  CAS  PubMed  Google Scholar 

  • Welsh DK, Yoo SH, Liu AC et al (2004) Bioluminescence imaging of individual fibroblasts reveals persistent, independently phased circadian rhythms of clock gene expression. Curr Biol 14:2289–2295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wever R (1965) Pendulum versus relaxation oscillation. In: Aschoff J (ed) Circadian clocks. North-Holland Publication, Amsterdam, pp 74–83

    Google Scholar 

  • Yeang HY (2013) Solar rhythm in the regulation of photoperiodic flowering of long-day and short-day plants. J Exp Bot 64:2643–2652

    Google Scholar 

  • Yoshida T, Murayama Y, Ito H et al (2009) Nonparametric entrainment of the in vitro circadian phosphorylation rhythm of cyanobacterial KaiC by temperature cycle. Proc Natl Acad Sci U S A 106:1648–1653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zimmerman WF (1969) On the absence of circadian rhythmicity in Drosophila pseudoobscura pupae. Biol Bull 136:494–500

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Takao Kondo, Kumiko Miwa, Isao Tokuda, Hiroshi Kori, and Chiaki Oshima for fruitful discussion and collaboration during the course of our studies. This study was supported in part by a Grant-in-Aid for Scientific Research (KAKENHI) from JSPS (Grant nos. 18K19349 and 23657138 to H. Iwasaki, 18H05474 to H. Ito, 16J40136 to Y.M.) and by the Education and Research Center for Mathematical and Data Science (Kyushu University to H. Ito).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hiroshi Ito or Hideo Iwasaki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ito, H., Murayama, Y., Kawamoto, N., Seki, M., Iwasaki, H. (2021). Damped Oscillation in the Cyanobacterial Clock System. In: Johnson, C.H., Rust, M.J. (eds) Circadian Rhythms in Bacteria and Microbiomes. Springer, Cham. https://doi.org/10.1007/978-3-030-72158-9_12

Download citation

Publish with us

Policies and ethics