Skip to main content

Utilizing Local Tangent Information for Word Re-embedding

  • Conference paper
  • First Online:
Advances in Information Retrieval (ECIR 2021)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12656))

Included in the following conference series:

  • 2311 Accesses

Abstract

Word embedding models typically learn dense and fixed-length vectors based on local word collocation patterns in a text corpus. Recent studies have discovered that these models often underestimate similarities between similar words and overestimate similarities between distant words. This leads to word similarity results obtained from word embedding models inconsistent with human judgment. A number of manifold learning-based word re-embedding methods are proposed to address this problem by re-embedding word vectors from the original embedding space to a new embedding space. However, these methods perform a weighted locally linear combination of embeddings of words and their neighbors twice. Besides, the reconstruction weights are easily influenced by the selection of word neighbors and the whole combination process is very time-consuming. In this paper, we introduce a novel word re-embedding method based on local tangent information to re-embed word vectors into a refined new space. Unlike previous approaches, our method re-embeds word vectors by aligning original and new embedding spaces based on the tangent information instead of performing weighted locally linear combination twice. To validate the proposed method, experiments were conducted on two standard evaluation tasks. The experimental results show that our method achieves better performance than state-of-the-art methods for word re-embedding.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://nlp.stanford.edu/projects/glove.

References

  1. Esposito, M., Damiano, E., Minutolo, A., De Pietro, G., Fujita, H.: Hybrid query expansion using lexical resources and word embeddings for sentence retrieval in question answering. Inf. Sci. 514, 88–105 (2020)

    Article  Google Scholar 

  2. Bagheri, E., Ensan, F., Al-Obeidat, F.: Neural word and entity embeddings for ad hoc retrieval. Inf. Process. Manag. 54(4), 657–673 (2018)

    Article  Google Scholar 

  3. Devlin, J., Zbib, R., Huang, Z., Lamar, T., Schwartz, R. M., Makhoul, J.: Fast and robust neural network joint models for statistical machine translation. In: Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (ACL), vol. 1, pp. 1370–1380 (2014)

    Google Scholar 

  4. Collobert, R.: Deep learning for efficient discriminative parsing. In: Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics, pp. 224–232 (2011)

    Google Scholar 

  5. Turian, J., Lev, R., Yoshua, B.: Word representations: a simple and general method for semi-supervised learning. In: Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics, pp. 384–394. Association for Computational Linguistics (ACL) (2010)

    Google Scholar 

  6. Socher, R., et al.: Recursive deep models for semantic compositionality over a sentiment treebank. In Proceedings of the Conference on Empirical Methods in Natural Language Processing (EMNLP), vol. 1631, pp. 1631–1642. Citeseer (2013b)

    Google Scholar 

  7. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (NAACL-HLT), Minneapolis, MN, USA, pp. 4171–4186 (2018)

    Google Scholar 

  8. Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., Kuksa, P.: Natural language processing (almost) from scratch. J. Mach. Learn. Res. 12(1), 2493–2537 (2011)

    MATH  Google Scholar 

  9. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word representations in vector space. In: Proceedings of Workshop at International Conference on Learning Representations (ICLR), Scottsdale, Arizona, pp. 3111–3119 (2013a)

    Google Scholar 

  10. Pennington, J., Socher, R., Manning, C.D.: GloVe: global vectors for word representation. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 1532–1543 (2014)

    Google Scholar 

  11. Qiu, L., Cao, Y., Nie, Z., Yu, Y., Rui, Y.: Learning word representation considering proximity and ambiguity. In: Proceedings of Twenty-Eighth AAAI Conference on Artificial Intelligence, pp. 1572–1578 (2014)

    Google Scholar 

  12. Peng, X., Zhou, D.: A framework for learning cross-lingual word embedding with topics. In: Wang, X., Zhang, R., Lee, Y.-K., Sun, L., Moon, Y.-S. (eds.) APWeb-WAIM 2020. LNCS, vol. 12318, pp. 285–293. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-60290-1_22

    Chapter  Google Scholar 

  13. Lan, Z., Chen, M., Goodman, S., Gimpel, K., Sharma, P., Soricut, R.: ALBERT: a lite BERT for self-supervised learning of language representations. In: Proceedings of the 8th International Conference on Learning Representations (ICLR), Addis Ababa, Ethiopia, pp. 1–17 (2020)

    Google Scholar 

  14. Liu, W., Zhou, P., Wang, Z., Zhao, Z., Deng, H., Ju, Q.: FastBERT: a self-distilling BERT with adaptive inference time. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics (ACL), pp. 6035–6044 (2020)

    Google Scholar 

  15. Hasan, S., Curry, E.: Word re-embedding via manifold dimensionality retention. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, pp. 321–326 (2017)

    Google Scholar 

  16. Chu, Y., Lin, H., Yang, L., Diao, Y., Zhang, S., Fan, X.: Refining word representations by manifold learning. In: Proceedings of the 28th International Joint Conference on Artificial Intelligence (IJCAI), pp. 5394–5400 (2019)

    Google Scholar 

  17. Zhang, Z., Zha, H.: Principal manifolds and nonlinear dimension reduction via local tangent space alignment. J. Shanghai Univ. 8(4), 406–424 (2002)

    Article  Google Scholar 

  18. Zhang, Z., Zha, H.: Nonlinear dimension reduction via local tangent space alignment. In: Liu, J., Cheung, Y., Yin, H. (eds.) IDEAL 2003. LNCS, vol. 2690, pp. 477–481. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45080-1_66

    Chapter  Google Scholar 

  19. Salton, G., Wong, A., Yang, C.S.: A vector space model for automatic indexing. Commun. ACM 18(11), 613–620 (1975)

    Article  Google Scholar 

  20. Deerwester, S., Dumais, S.T., Furnas, G.W., Landauer, T.K., Harshman, R.: Indexing by latent semantic analysis. J. Am. Soc. Inf. Sci. 41(6), 391–407 (1990)

    Article  Google Scholar 

  21. Lund, K., Burgess, C.: Producing high-dimensional semantic spaces from lexical co-occurrence. Behav. Res. Methods Instrum. Comput. 28(2), 203–208 (1996)

    Article  Google Scholar 

  22. Dhillon, P., Foster, D.P., Ungar, L.H.: Multi-view learning of word embeddings via CCA. Advances in Neural Information Processing Systems, pp. 199–207 (2011)

    Google Scholar 

  23. Lebret, R., Collobert, R.: Word embeddings through hellinger PCA. In: Proceedings of the 14th Conference of the European Chapter of the Association for Computational Linguistics. Idiap, pp. 482–490 (2013)

    Google Scholar 

  24. Hinton, G.E.: Learning distributed representations of concepts. In: Proceedings of the Eighth Annual Conference of the Cognitive Science Society, vol. 1, pp. 1–12 (1986)

    Google Scholar 

  25. Bengio, Y., Ducharme, R., Vincent, P., Jauvin, C.: A neural probabilistic language model. J. Mach. Learn. Res. 3(1), 1137–1155 (2003)

    MATH  Google Scholar 

  26. Bengio, Y., Senécal, J.S.: Quick training of probabilistic neural nets by importance sampling. In: Proceedings of the Conference on Artificial Intelligence and Statistics (AISTATS), pp. 1–9 (2003)

    Google Scholar 

  27. Mnih, A., Hinton, G.: Three new graphical models for statistical language modelling. In: Proceedings of the 24th International Conference on Machine Learning, pp. 641–648 (2007)

    Google Scholar 

  28. Collobert, R., Weston, J.: A unified architecture for natural language processing: deep neural networks with multitask learning. In: Proceedings of the 25th International Conference on Machine Learning, pp. 160–167 (2008)

    Google Scholar 

  29. Chaudhary, A., Zhou, C., Levin, L., Neubig, G., Mortensen, D.R., Carbonell, J.G.: Adapting word embeddings to new languages with morphological and phonological subword representations. arXiv preprint arXiv:1808.09500 (2018)

  30. Kolyvakis, P., Kalousis, A., Kiritsis, D.: Deepalignment: Unsupervised ontology matching with refined word vectors. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, vol. 1, pp. 787–798 (2018)

    Google Scholar 

  31. Seyeditabari, A., Tabari, N., Gholizadeh, S., Zadrozny, W.: Emotional embeddings: refining word embeddings to capture emotional content of words. arXiv preprint arXiv:1906.00112 (2019)

  32. Utsumi. A.: Refining pretrained word embeddings using layer-wise relevance propagation. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 4840–4846 (2018)

    Google Scholar 

  33. Yu, L.C., Wang, J., Lai, K.R., Zhang, X.: Refining word embeddings using intensity scores for sentiment analysis. IEEE Trans. Audio Speech Lang. Process. 26(3), 671–681 (2017)

    Article  Google Scholar 

  34. Mu, J., Bhat, S., Viswanath, P.: All-but-the-top: simple and effective postprocessing for word representations. In: Proceedings of Poster at 6th International Conference on Learning Representations (ICLR), 1–25 (2018)

    Google Scholar 

  35. Roweis, S.T., Saul, L.K.: Nonlinear dimensionality reduction by locally linear embedding. Science 290(5500), 2323–2326 (2000)

    Article  Google Scholar 

  36. Bruni, E., Tran, N.K., Baroni, M.: Multimodal distributional semantics. J. Artif. Intell. Res. 49(1), 1–47 (2014)

    MathSciNet  MATH  Google Scholar 

  37. Agirre, E., Alfonseca, E., Hall, K.B., Kravalova, J., Pasca, M., Soroa, A.: A study on similarity and relatedness using distributional and wordnet-based approaches. In: Proceedings of Human Language Technologies: The 2009 Annual Conference of the North American Chapter of the Association for Computational Linguistics (HLT-NAACL), pp. 19–27 (2009)

    Google Scholar 

  38. Kira, R., Agichtein, E., Gabrilovich, E.: A word at a time: computing word relatedness using temporal semantic analysis. In: Proceedings of the 20th International Conference on World Wide Web (WWW), pp. 337–346 (2011)

    Google Scholar 

  39. Rubenstein, H., Goodenough, J.B.: Contextual correlates of synonymy. Commun. ACM 8(10), 627–633 (1965)

    Article  Google Scholar 

  40. Finkelstein, L., Gabrilovich, E., Matias, Y.: Placing search in context: the concept revisited. In: Proceedings of the 10th International Conference on World Wide Web (WWW), pp. 406–414 (2001)

    Google Scholar 

  41. Hill, F., Korhonen, A.: Simlex-999: evaluating semantic models with (genuine) similarity estimation. Comput. Linguist. 41(4), 665–695 (2015)

    Article  MathSciNet  Google Scholar 

  42. Gerz, D., Vulić, I., Hill, F., Reichart, R., Korhonen, A.: Simverb-3500: a large-scale evaluation set of verb similarity. arXiv preprint arXiv:1608.00869 (2016)

Download references

Acknowledgements

We would like to thank anonymous reviewers for their helpful comments and suggestions. This work was supported by the National Natural Science Foundation of China under Project No. 61876062 and General Key Laboratory for Complex System Simulation under Project No. XM2020XT1004.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong Zhou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhao, W., Zhou, D., Li, L., Chen, J. (2021). Utilizing Local Tangent Information for Word Re-embedding. In: Hiemstra, D., Moens, MF., Mothe, J., Perego, R., Potthast, M., Sebastiani, F. (eds) Advances in Information Retrieval. ECIR 2021. Lecture Notes in Computer Science(), vol 12656. Springer, Cham. https://doi.org/10.1007/978-3-030-72113-8_49

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-72113-8_49

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-72112-1

  • Online ISBN: 978-3-030-72113-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics