Skip to main content

TLS-Covid19: A New Annotated Corpus for Timeline Summarization

Part of the Lecture Notes in Computer Science book series (LNISA,volume 12656)


The rise of social media and the explosion of digital news in the web sphere have created new challenges to extract knowledge and make sense of published information. Automated timeline generation appears in this context as a promising answer to help users dealing with this information overload problem. Formally, Timeline Summarization (TLS) can be defined as a subtask of Multi-Document Summarization (MDS) conceived to highlight the most important information during the development of a story over time by summarizing long-lasting events in a timely ordered fashion. As opposed to traditional MDS, TLS has a limited number of publicly available datasets. In this paper, we propose TLS-Covid19 dataset, a novel corpus for the Portuguese and English languages. Our aim is to provide a new, larger and multi-lingual TLS annotated dataset that could foster timeline summarization evaluation research and, at the same time, enable the study of news coverage about the COVID-19 pandemic. TLS-Covid19 consists of 178 curated topics related to the COVID-19 outbreak, with associated news articles covering almost the entire year of 2020 and their respective reference timelines as gold-standard. As a final outcome, we conduct an experimental study on the proposed dataset over two extreme baseline methods. All the resources are publicly available at


  • Timeline summarization
  • Datasets
  • Evaluation

This is a preview of subscription content, access via your institution.

Buying options

USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-72113-8_33
  • Chapter length: 16 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-72113-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   149.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.


  1. 1.

  2. 2.

  3. 3.

  4. 4.

  5. 5.

  6. 6.

  7. 7.

  8. 8.

  9. 9.

  10. 10.

  11. 11.

  12. 12.

  13. 13.

  14. 14.


  1. Alam, F., et al.: Fighting the COVID-19 infodemic: modeling the perspective of journalists, fact-checkers, social media platforms, policy makers, and the society. arXiv preprint arXiv:2005.00033 (2020)

  2. Allan, J., Gupta, R., Khandelwal, V.: Temporal Summaries of New topics. SIGIR 2001: Proceedings of the 24th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. New Orleans, Louisiana, USA. September 9 – 13, pp. 1018. ACM (2001)

    Google Scholar 

  3. Alonso, O., Baeza-Yates, R., Gertz, M.: Exploratory search using timelines. In: ESCHI 2007: Proceedings of the Workshop on Exploratory Search and Computer Human Interaction associated to CHI2007: SIGCHI Conference on Human Factors in Computing Systems. San Jose, CA, USA. April 29, pp. 2326. ACM (2007)

    Google Scholar 

  4. Alonso, O., Berberich, K., Bedathur, S., Weikum, G.: Time-based exploration of News archives. In: Proceedings of the fourth Workshop on Human-Computer Interaction and Information Retrieval (HCIR), New Brunswick, USA, pp. 12–15 (2010)

    Google Scholar 

  5. Ansah, J., Liu, L., Kang, W., Kwashie, S., Li, J., Li, J.: A Graph is worth a thousand words: telling event stories using timeline summarization graphs. In: Proceedings of the World Wide Web Conference (WWW 2019). San Francisco, USA. May 13 – 17, pp. 25652571. ACM (2019)

    Google Scholar 

  6. Aslam, J., Diaz, F., Ekstrand-Abueg, M., McCreadie, R., Pavlu, V., Sakai, T.: TREC 2014 Temporal Summarization Track Overview. In: Proceedings of the Twenty-Third Text Retrieval Conference (TREC 2014). Gaithersburg, USA, MIT Press (2015)

    Google Scholar 

  7. Aslam, J., Diaz, F., Ekstrand-Abueg, M., McCreadie, R., Pavlu, V., Sakai, T.: TREC 2015 Temporal Summarization TrackOverview. In: Proceedings of the Twenty-fourth Text REtrieval Conference (TREC 2014). Gaithersburg, USA. November 17 - 20: MIT Press (2016)

    Google Scholar 

  8. Aslam, J., Diaz, F., Ekstrand-Abueg, M., Pavlu, V., Sakai, T.: TREC 2013 Temporal Summarization. In: Proceedings of the Twenty-Second Text REtrieval Conference (TREC 2013). Gaithersburg, USA. November 19 - 22: MIT Press (2014)

    Google Scholar 

  9. Barzilay, R., Elhadad, N., McKeown, K.R.: Inferring strategies for sentence ordering in multidocument News summarization. J. Artif. Intell. Res. 17(1), 35–55 (2002)

    CrossRef  Google Scholar 

  10. Berger, A., Mittal, V.O.: Query-relevant Summarization using FAQs. In: Proceedings of the 38th annual meeting on association for computational linguistics (ACL 2000), Hong Kong, China. October 03 – 06, pp. 294–301 (2000)

    Google Scholar 

  11. Campos, R., Mangaravite, V., Pasquali, A., Jatowt, A., Jorge, A., Nunes, C.: YAKE! keyword extraction from single documents using multiple local features. Inf. Sci. J. 509, 257–289 (2020)

    CrossRef  Google Scholar 

  12. Catizone, R., Dalli, A., Wilks, Y.: Evaluating automatically generated timelines from the web. In: LREC 2006: Proceedings of the 5th International Conference on Language Resources and Evaluation. Genoa, Italy. May 24 - 26: ELDA, pp. 885888 (2006)

    Google Scholar 

  13. Chen, X., Chan, Z., Gao, S., Yu, M.-H., Zhao, D., Yan, R.: Learning towards Abstractive Timeline Summarization. Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19), pp. 4939–4945 (2019)

    Google Scholar 

  14. Chieu, H.L., Lee, Y.K.: Query based event extraction along a timeline. In: Proceedings of the 27th Annual International Conference on Research and Development in Information Retrieval (SIGIR2004), Sheffield, UK. July 25–29, pp. 425–432. ACM (2004)

    Google Scholar 

  15. Esteva, A., et al.: Co-search: Covid-19 information retrieval with semantic search, question answering, and abstractive summarization. arXiv preprint arXiv:2006.09595 (2020)

  16. Ghalandari, D.G., Ifrim, G.: Examining the state-of-the-art in News timeline summarization. arXiv preprint arXiv:2005.10107 (2020)

  17. Goldstein, J., Mittal, V., Carbonell, J., Kantrowitz, M.: Multi-document Summarization by Sentence Extraction. In: Proceedings of the Workshop on Automatic summarization (ANLP@NAACL2000), Seattle, Washington. April 30, pp. 40–48 (2000)

    Google Scholar 

  18. Hirao, T., Nishino, M., Suziki, J., Nagata, M.: Enumeration of extractive oracle summaries. arXiv preprint arXiv:1701.01614 (2017)

  19. Honnibal, M., Montani, I.: spaCy 2: natural language understanding with bloom embeddings. Convolutional Neural Netw. Incremental Parsing 7(1) (2017)

    Google Scholar 

  20. Lin, H., Bilmes, J.: Multi-document summarization via budget maximization of submodular functions. In: Proceedings of Human Language Technologies 2010: The Conference of the North American Chapter of the Association for Computational Linguistc, Los Angeles, pp. 912–920 (2010)

    Google Scholar 

  21. Luhn, H.P.: The automatic creation of literature abstracts. IBM J. Res. Dev. 2(2), 159–165 (1958)

    MathSciNet  CrossRef  Google Scholar 

  22. Martschat, S., Markert, K.: Improving {ROUGE} for timeline summarization. In: Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics, Valencia, Spain. April 3–7, pp. 285–290 (2017)

    Google Scholar 

  23. Martschat, S., Markert, K.: A temporally sensitive submodularity framework for timeline summarization. In: Proceedings of the 22nd Conference on Computational Natural Language Learning (CoNLL 2018). Brussels, Belgium. October 31 - November 1: Association for Computational Linguistic, p. 230 (2018)

    Google Scholar 

  24. McCreadie, R., Rajput, S., Soboroff, I., Macdonald, C., Ounis, I.: On enhancing the robustness of time-line summarization test collections. Inf. Process. Manage. 56(5), 18151836 (2019)

    Google Scholar 

  25. McCreadie, R., Santos, R.L.T., Macdonald, C., Ounis, I.: Explicit diversification of event aspects for temporal summarization. ACM Trans. Inf. Syst. 36(3), 1–31 (2018).

    CrossRef  Google Scholar 

  26. Minard, A.-L., et al.: SemEval-2015 Task 4: Timeline: cross-document event ordering. In: Proceedings of the 9th International Workshop on Semantic Evaluation (SemEval2015). Denver, USA, June 4–5: Association for Computational Linguistic, pp. 778–786 (2015)

    Google Scholar 

  27. Pasquali, A., Mangaravite, V., Campos, R., Jorge, A.M., Jatowt, A.: Interactive system for automatically generating temporal narratives. In: Azzopardi, L., Stein, B., Fuhr, N., Mayr, P., Hauff, C., Hiemstra, D. (eds.) ECIR 2019. LNCS, vol. 11438, pp. 251–255. Springer, Cham (2019).

    CrossRef  Google Scholar 

  28. Tran, G.B., Alrifai, M., Nguyen, D.Q.: Predicting relevant news events for timeline summaries. In: WWW2013 Proceedings of the Companion Publication of the 22nd International Conference on World Wide Web Companion, Rio de Janeiro, Brazil. May 13 – 17, pp. 91–92 (2013)

    Google Scholar 

  29. Tran, G., Alrifai, M., Herder, E.: Timeline summarization from relevant headlines. In: Hanbury, A., Kazai, G., Rauber, A., Fuhr, N. (eds.) ECIR 2015. LNCS, vol. 9022, pp. 245–256. Springer, Cham (2015).

    CrossRef  Google Scholar 

  30. Voorhees, E., et al.: TREC-COVID: constructing a pandemic information retrieval test collection. ArXiv abs/2005.04474 (2020)

    Google Scholar 

  31. Wang, L., Cardie, C., Marchetti, G.: Socially-informed timeline generation for complex events. In: Proceedings of the Human Language Technologies: The 2015 Annual Conference of the North American Chapter of the ACL. Denver, Colorado. May 31-June 5: Association for Computational Linguistic, p. 1055 (2015)

    Google Scholar 

  32. Wang, L., et al.: CORD-19: The Covid-19 open research dataset. arXiv:2004.10706v4 (2020)

  33. Yan, R., Wan, X., Otterbacher, J., Kong, L., Li, X., Zhang, Y.: Evolutionary timeline summarization: a balanced optimization framework via iterative substitution. In: Proceedings of the 34th International Conference on Research and Development in Information Retrieval (SIGIR 2011). Beijing, China. July 24–28, pp. 745–754. ACM (2011)

    Google Scholar 

  34. Yang, W., et al.: On the generation of medical dialogues for COVID19. arXiv:2005.05442v2 (2020)

Download references


The first five authors of this paper were financed by the ERDF – European Regional Development Fund through the North Portugal Regional Operational Programme (NORTE 2020), under the PORTUGAL 2020 and by National Funds through the Portuguese funding agency, FCT - Fundação para a Ciência e a Tecnologia within project PTDC/CCI-COM/31857/2017 (NORTE-01–0145-FEDER-03185). This funding fits under the research line of the Text2Story project. The first author of this paper was employed by Signal Media Ltda. When part of this work was developed. The last author was employed by Kyoto University when the first version of this paper was completed.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Arian Pasquali .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Pasquali, A., Campos, R., Ribeiro, A., Santana, B., Jorge, A., Jatowt, A. (2021). TLS-Covid19: A New Annotated Corpus for Timeline Summarization. In: Hiemstra, D., Moens, MF., Mothe, J., Perego, R., Potthast, M., Sebastiani, F. (eds) Advances in Information Retrieval. ECIR 2021. Lecture Notes in Computer Science(), vol 12656. Springer, Cham.

Download citation

  • DOI:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-72112-1

  • Online ISBN: 978-3-030-72113-8

  • eBook Packages: Computer ScienceComputer Science (R0)