List of European countries: Andorra, Albania, Austria, Åland Islands, Bosnia and Herzegovina, Belgium, Bulgaria, Belarus, Switzerland, Cyprus, Czech Republic, Germany, Denmark, Estonia, Spain, Finland, Faroe Islands, France, United Kingdom, Guernsey, Greece, Croatia, Hungary, Ireland, Isle of Man, Iceland, Italy, Jersey, Liechtenstein, Lithuania, Luxembourg, Latvia, Monaco, Moldova, Macedonia, Malta, Netherlands, Norway, Poland, Portugal, Romania, Russian Federation, Sweden, Slovenia, Svalbard and Jan Mayen, Slovakia, San Marino, Ukraine, Vatican City
Google Scholar
Bonaventura, M., Ciotti, V., Panzarasa, P., Liverani, S., Lacasa, L., Latora, V.: Predicting success in the worldwide start-up network. Sci. Rep. 10(1), 1–6 (2020)
CrossRef
Google Scholar
Caruana, R., Niculescu-Mizil, A.: An empirical comparison of supervised learning algorithms. In: Proceedings of the 23rd International Conference on Machine Learning, pp. 161–168 (2006)
Google Scholar
Ganin, Y., et al.: Domain-adversarial training of neural networks. J. Mach. Learn. Res. 17(1), 2030–2096 (2016)
MathSciNet
Google Scholar
Gastaud, C., Carniel, T., Dalle, J.M.: The varying importance of extrinsic factors in the success of startup fundraising: competition at early-stage and networks at growth-stage (2019)
Google Scholar
Hunter, D.S., Saini, A., Zaman, T.: Picking winners: A data driven approach to evaluating the quality of startup companies. arXiv preprint arXiv:1706.04229 (2017)
Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167 (2015)
Kim, T., Kim, C.: Attract, perturb, and explore: learning a feature alignment network for semi-supervised domain adaptation. arXiv preprint arXiv:2007.09375 (2020)
Kouw, W.M., Loog, M.: A review of domain adaptation without target labels. IEEE Trans. Pattern Anal. Mach. Intell. 43, 766–785 (2019)
CrossRef
Google Scholar
Miloud, T., Aspelund, A., Cabrol, M.: Startup valuation by venture capitalists: an empirical study. Venture Capital 14, 151–174 (2012)
CrossRef
Google Scholar
Motiian, S., Piccirilli, M., Adjeroh, D.A., Doretto, G.: Unified deep supervised domain adaptation and generalization. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 5715–5725 (2017)
Google Scholar
Nair, V., Hinton, G.E.: Rectified linear units improve restricted Boltzmann machines. In: ICML (2010)
Google Scholar
Prokhorenkova, L., Gusev, G., Vorobev, A., Dorogush, A.V., Gulin, A.: Catboost: unbiased boosting with categorical features. In: Advances in Neural Information Processing Systems, pp. 6638–6648 (2018)
Google Scholar
Quintero, S.: An empirical perspective on startup valuations (2019)
Google Scholar
Reinfeld, P.: START-UP VALUATION Solving the valuation puzzle of new business ventures. Master’s thesis, HEC Paris, XXX (2018)
Google Scholar
Roe, B.P., Yang, H.J., Zhu, J., Liu, Y., Stancu, I., McGregor, G.: Boosted decision trees as an alternative to artificial neural networks for particle identification. Nucl. Instrum. Methods Phys. Res. Sect. A Accelerators Spectrometers Detectors Assoc. Equipment 543(2–3), 577–584 (2005)
CrossRef
Google Scholar
Saito, K., Kim, D., Sclaroff, S., Darrell, T., Saenko, K.: Semi-supervised domain adaptation via minimax entropy. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 8050–8058 (2019)
Google Scholar
Sharchilev, B., Roizner, M., Rumyantsev, A., Ozornin, D., Serdyukov, P., de Rijke, M.: Web-based startup success prediction. In: Proceedings of the 27th ACM International Conference on Information and Knowledge Management, pp. 2283–2291. ACM (2018)
Google Scholar
Team, C.P.: Glossary of funding types (2020). https://support.crunchbase.com/hc/en-us/articles/115010458467-Glossary-of-Funding-Types, Accessed 14 Sep 2020
Xiang, G., Zheng, Z., Wen, M., Hong, J., Rose, C., Liu, C.: A supervised approach to predict company acquisition with factual and topic features using profiles and news articles on techcrunch. In: Sixth International AAAI Conference on Weblogs and Social Media (2012)
Google Scholar
Zhang, Q., Ye, T., Essaidi, M., Agarwal, S., Liu, V., Loo, B.T.: Predicting startup crowdfunding success through longitudinal social engagement analysis. In: Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, pp. 1937–1946. ACM (2017)
Google Scholar
Zhang, Y., Haghani, A.: A gradient boosting method to improve travel time prediction. Transp. Res. Part C Emerg. Technol 58, 308–324 (2015)
CrossRef
Google Scholar