Skip to main content

2D Dense-UNet: A Clinically Valid Approach to Automated Glioma Segmentation

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12659))

Abstract

Brain tumour segmentation is a requirement of many quantitative MRI analyses involving glioma. This paper argues that 2D slice-wise approaches to brain tumour segmentation may be more compatible with current MRI acquisition protocols than 3D methods because clinical MRI is most commonly a slice-based modality. A 2D Dense-UNet segmentation model was trained on the BraTS 2020 dataset. Mean Dice values achieved on the test dataset were: 0.859 (WT), 0.788 (TC) and 0.766 (ET). Median test data Dice values were: 0.902 (WT), 0.887 (TC) and 0.823 (ET). Results were comparable to previous high performing BraTS entries. 2D segmentation may have advantages over 3D methods in clinical MRI datasets where volumetric sequences are not universally available.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ostrom, Q.T., Gittleman, H., Liao, P., Rouse, C., Chen, Y., Dowling, J., et al.: CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2007–2011. Neuro. Oncol. 16(Suppl 4), iv1–iv63 (2014 ). https://pubmed.ncbi.nlm.nih.gov/25304271

  2. Hanif, F., Muzaffar, K., Perveen, K., Malhi, S.M., Simjee, S.U.: Glioblastoma multiforme: a review of its epidemiology and pathogenesis through clinical presentation and treatment. Asian Pac. J. Cancer Prev. 18(1), 3–9 (2017). https://pubmed.ncbi.nlm.nih.gov/28239999

  3. Menze, B.H., et al.: the multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans. Med. Imaging 34(10), 1993–2024 (2015)

    Article  Google Scholar 

  4. Bakas, S., Akbari, H., Sotiras, A., Bilello, M., Rozycki, M., Kirby, J.S., et al.: Advancing the cancer genome atlas glioma MRI collections with expert segmentation labels and radiomic features. Sci. Data 4, 170117 (2017)

    Article  Google Scholar 

  5. Bakas, S., Reyes, M., Jakab, A., Bauer, S., Rempfler, M., Crimi, A., et al.: Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the BRATS challenge (2018)

    Google Scholar 

  6. Bakas, S., et al.: Segmentation labels for the pre-operative scans of the TCGA-GBM collection. Cancer Imaging Arch. (2017). https://doi.org/10.7937/K9/TCIA.2017.KLXWJJ1Q

    Article  Google Scholar 

  7. Bakas, S., et al.: Segmentation labels and radiomic features for the pre-operative scans of the TCGA-LGG collection. Cancer Imaging Arch. (2017). https://doi.org/10.7937/K9/TCIA.2017.GJQ7R0EF

    Article  Google Scholar 

  8. Clark, K., et al.: The cancer imaging archive (TCIA): maintaining and operating a public information repository. J. Digit. Imaging 26(6), 1045–1057 (2013). https://doi.org/10.1007/s10278-013-9622-7

    Article  Google Scholar 

  9. Rudie, J.D., Weiss, D.A., Saluja, R., Rauschecker, A.M., Wang, J., Sugrue, L., et al.: Multi-disease segmentation of gliomas and white matter hyperintensities in the BraTS data using a 3D convolutional neural network. Front. Comput. Neurosci 13, 84 (2019)

    Article  Google Scholar 

  10. Yogananda, C.G.B., et al.: A novel fully automated MRI-based deep learning method for classification of IDH mutation status in brain gliomas. Neuro. Oncol. 22, 402–411 (2019)

    Google Scholar 

  11. van Dijken, B.R.J., van Laar, P.J., Li, C., Yan, J.-L., Boonzaier, N.R., Price, S.J., et al.: Ventricle contact is associated with lower survival and increased peritumoral perfusion in glioblastoma. J. Neurosurg. JNS 131(3), 717–723 (2018). https://thejns.org/view/journals/j-neurosurg/131/3/article-p717.xml

  12. Louis, D.N., et al.: The 2016 world health organization classification of tumors of the central nervous system: A summary. Acta Neuropathol. 131(6), 803–820 (2016). https://doi.org/10.1007/s00401-016-1545-1

    Article  Google Scholar 

  13. Leon, S.P., Folkerth, R.D., Black, P.M.: Microvessel density is a prognostic indicator for patients with astroglial brain tumors. Cancer 77(2), 362–372 (1996)

    Article  Google Scholar 

  14. Wesseling, P., van der Laak, J.A., Link, M., Teepen, H.L., Ruiter, D.J.: Quantitative analysis of microvascular changes in diffuse astrocytic neoplasms with increasing grade of malignancy. Hum. Pathol. 29(4), 352–358 (1998)

    Article  Google Scholar 

  15. Lin, Z.-X.: Glioma-related edema: new insight into molecular mechanisms and their clinical implications. Chin. J. Cancer 32(1), 49–52 (2013). https://pubmed.ncbi.nlm.nih.gov/23237218

  16. Wu, C.-X., Lin, G.-S., Lin, Z.-X., Zhang, J.-D., Liu, S.-Y., Zhou, C.-F.: Peritumoral edema shown by MRI predicts poor clinical outcome in glioblastoma. World J. Surg. Oncol. 11(13), 97 (2015). https://pubmed.ncbi.nlm.nih.gov/25886608

  17. Ellingson, B.M., Bendszus, M., Boxerman, J., Barboriak, D., Erickson, B.J., Smits, M., et al.: Consensus recommendations for a standardized Brain Tumor Imaging Protocol in clinical trials. Neuro. Oncol. 17(9), 1188–1198 (2015). https://pubmed.ncbi.nlm.nih.gov/26250565

  18. Chagla, G.H., Busse, R.F., Sydnor, R., Rowley, H.A., Turski, P.A.: Three-dimensional fluid attenuated inversion recovery imaging with isotropic resolution and nonselective adiabatic inversion provides improved three-dimensional visualization and cerebrospinal fluid suppression compared to two-dimensional flair at 3 tesla. Invest. Radiol. 43(8), 547–551 (2008). https://pubmed.ncbi.nlm.nih.gov/18648253

  19. Hausmann, D., Liu, J., Budjan, J., Reichert, M., Ong, M., Meyer, M., et al.: Image quality assessment of 2D versus 3D T2WI and evaluation of ultra-high b-Value (b=2,000 mm/s(2)) DWI for response assessment in rectal cancer. Anticancer Res. 38(2), 969–978 (2018)

    Google Scholar 

  20. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  21. Huang, G., Liu, Z., van der Maaten, L., Weinberger, K.Q.: Densely Connected Convolutional Networks (2016)

    Google Scholar 

  22. Isensee, F., Kickingereder, P., Wick, W., Bendszus, M., Maier-Hein, K.H.: No new-net. In: Crimi, A., Bakas, S., Kuijf, H., Keyvan, F., Reyes, M., van Walsum, T. (eds.) BrainLes 2018. LNCS, vol. 11384, pp. 234–244. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11726-9_21

    Chapter  Google Scholar 

  23. Pérez-Beteta, J., Molina-García, D., Villena, M., Rodríguez, M.J., Velásquez, C., Martino, J., et al.: Morphologic features on MR imaging classify multifocal glioblastomas in different prognostic groups. Am. J. Neuroradiol. 40, 634–640 (2019). https://www.ajnr.org/content/early/2019/03/28/ajnr.A6019.abstract

  24. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., et al.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems (2015). https://tensorflow.org/

  25. Myronenko, A.: 3D MRI brain tumor segmentation using autoencoder regularization. In: Crimi, A., Bakas, S., Kuijf, H., Keyvan, F., Reyes, M., van Walsum, T. (eds.) BrainLes 2018. LNCS, vol. 11384, pp. 311–320. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11726-9_28

    Chapter  Google Scholar 

  26. Curtin, L., Whitmire, P., Rickertsen, C.R., Mazza, G.L., Canoll, P., Johnston, S.K., et al.: Assessment of prognostic value of cystic features in glioblastoma relative to sex and treatment with standard-of-care. medRxiv 19013813 (2020). https://medrxiv.org/content/early/2020/07/07/19013813.abstract

  27. Zhou, J., Reddy, M.V., Wilson, B.K.J., Blair, D.A., Taha, A., Frampton, C.M., et al.: MR imaging characteristics associate with tumor-associated macrophages in glioblastoma and provide an improved signature for survival prognostication. Am. J. Neuroradiol. 39(2), 252–259 (2018). https://www.ajnr.org/content/39/2/252.abstract

  28. Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-Net: learning dense volumetric segmentation from sparse annotation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 424–432. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_49

    Chapter  Google Scholar 

  29. Mlynarski, P., Delingette, H., Criminisi, A., Ayache, N.: 3D convolutional neural networks for tumor segmentation using long-range 2D context. Comput. Med. Imaging Graph. 73, 60–72 (2019). https://www.sciencedirect.com/science/article/pii/S0895611118304221

  30. Zhou, X.: Automatic segmentation of multiple organs on 3D CT images by using deep learning approaches. Adv. Exp. Med. Biol. 1213, 135–147 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

McHugh, H., Talou, G.M., Wang, A. (2021). 2D Dense-UNet: A Clinically Valid Approach to Automated Glioma Segmentation. In: Crimi, A., Bakas, S. (eds) Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. BrainLes 2020. Lecture Notes in Computer Science(), vol 12659. Springer, Cham. https://doi.org/10.1007/978-3-030-72087-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-72087-2_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-72086-5

  • Online ISBN: 978-3-030-72087-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics