Skip to main content

Impact of Innovative Technologies in Healthcare Organization Productivity with ERP

Part of the Studies in Computational Intelligence book series (SCI,volume 954)

Abstract

This chapter discussed the importance of enterprise resource planning (ERP) in different organization and how it will enhance productivity for the workers and for the patients by providing best services using innovative technologies. Also, this research will define the impact of innovative technologies in organization productivity with ERP system. Moreover, this chapter determine dependent which is organization productivity and independent variables such as RFID, telemedicine, mobility, artificial intelligence and innovative technologies which can be integrated with ERP system and it will help in improving organization productivity to describe the best use of ERP system to the healthcare organization when adopting innovative technology. As a result, implementing innovative technologies within healthcare organizations it will benefit the patients and physicians working in organization. Hence, the critical role of IT department is to determine the overall success in organizations and provide flexible, economical services to physicians, patients and end users involved in the organization.

Keywords

  • Innovative technologies
  • Artificial intelligence
  • Healthcare
  • Enterprise resource planning (ERP)

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-72080-3_18
  • Chapter length: 22 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   219.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-72080-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   279.99
Price excludes VAT (USA)
Hardcover Book
USD   279.99
Price excludes VAT (USA)

References

  • Afzal, Z., Schuemie, M. J., van Blijderveen, J. C. (2013). Improving sensitivity of machine learning methods for automated case identification from free-text electronic medical records. BMC Medical Informatics and Decision Making, 13(1), 1–11.

    Google Scholar 

  • Agarwal, R., & Prasad, J. (1998). A conceptual and operational definition of personal innovativeness in the domain of information technology. Information Systems Research, 9(2), 204–215.

    CrossRef  Google Scholar 

  • Akkaya, K., Younis, M., & Youssef, M. (2005). Efficient aggregation of delay-constrained data in wireless sensor networks. In Proceedings of the ACS/IEEE 2005 International Conference on Computer Systems and Applications (pp. 904–909). IEEE Computer Society.

    Google Scholar 

  • Al Kurdi, O. F. (2021). A critical comparative review of emergency and disaster management in the arab world. Journal of Business and Socio-economic Development, 1(1), 24–46.

    Google Scholar 

  • Alshurafat, H., Al Shbail, M. O. & Mansour, E. (2021). Strengths and weaknesses of forensic accounting: an implication on the socio-economic development. Journal of Business and Socio-economic Development, 1(2), 35–48.

    Google Scholar 

  • Alzaneen, R., & Mahmoud, A. (2019). The role of management information systems in strengthening the administrative governance in ministry of education and higher education in Gaza. International Journal of Business Ethics and Governance, 2(3), 1–43. https://doi.org/10.51325/ijbeg.v2i3.44.

  • Aminova, M., & Marchi, E. (2021). The role of innovation on start-up failure vs. its success. International Journal of Business Ethics and Governance, 4(1), 41–72. https://doi.org/10.51325/ijbeg.v4i1.60.

  • Aminova, M., Mareef, S., & Machado, C. (2020). Entrepreneurship ecosystem in Arab World: The status quo, impediments and the ways forward. International Journal of Business Ethics and Governance, 3(3), 1–13. https://doi.org/10.51325/ijbeg.v3i3.37.

  • Awad, I. M., Al-Jerashi, G. K. & Alabaddi, Z. A. (2021). Determinants of private domestic investment in Palestine: time series analysis. Journal of Business and Socio-economic Development, 1(1), 71–86.

    Google Scholar 

  • Awwad, B. S. A. (2018). Market power and performance: An Islamic banking perspective. Corporate Ownership & Control, 15(3–1), 163–171. https://doi.org/10.22495/cocv15i3c1p2.

  • Barlow, J., Hendy, J., & Chrysanthaki, T. (2012). Scaling-up remote care in the United Kingdom: Lessons from a decade of policy intervention. In A. Glascock & D. M. Kutzik (Eds.), Essential lessons for the success of Telehomecare—Why it’s not plug and play (p. 2012). Amsterdam: OS Press.

    Google Scholar 

  • Beagle & C. (2012). The ERP effect: Decision 2—Impact, Armed Forces Comptroller.

    Google Scholar 

  • Benders, J., Schouteten, R., & Aoulad el Kadi, M. (2009). ERP-systems and Job content: A case study of HR assistants. Personnel Review, 38, 641–654.

    CrossRef  Google Scholar 

  • Bishop, T. F., Press, M. J., Mendelsohn, J. L., & Casalino, L. P. (2013). Electronic communication improves access, but barriers to its widespread adoption remain. Health Aff (Millwood), 32(8), 1361–1367. https://doi.org/10.1377/hlthaff.2012.1151. [Medline: 23918479].

  • Bower, P., Cartwright, M., Hirani, S. P., Barlow, J., Hendy, J., & Knapp, M. (2011). A comprehensive evaluation of the impact of telemonitoring in patients with long-term conditions and social care needs: protocol for the whole systems demonstrator cluster randomised trial. BMC Health Services Research, 5(11), 184. https://doi.org/10.1186/1472-6963-11-184. [Medline: 21819569]

  • Derbali, A. (2021). Determinants of the performance of Moroccan banks. Journal of Business and Socio-economic Development, 1(1), 102–117.

    Google Scholar 

  • Caffery, L. J., Smith, A. C. (2010). A literature review of email-based telemedicine. Studies in Health Technology and Informatics, 161, 20–34. https://doi.org/10.3233/978-1-60750-659-1-20. [Medline: 21191155].

  • Chen, Y. C., Ke, W. C., & Chiu, H. W. (2014). Risk classification of cancer survival using ANN with gene expression data from multiple laboratories. Computers in Biology and Medicine, 48(5), 1–7.

    CrossRef  Google Scholar 

  • Chih-Jen, H. (2008). Telemedicine information monitoring system. Paper Presented at the E-health Networking, Applications and Services, 2008. HealthCom 2008. 10th international conference.

    Google Scholar 

  • Chorbev, I., & Mihajlov, M. (2008). Wireless telemedicine services as part of an integrated system for e-medicine. Paper Presented at the Electrotechnical Conference, 2008. MELECON 2008. The 14th IEEE Mediterranean.

    Google Scholar 

  • Cimperman, M., Makovec, B. M., & Trkman, P. (2016). Analyzing older users’ home telehealth services acceptance behavior-applying an extended UTAUT model. International Journal of Medical Informatics, 90, 22–31.

    CrossRef  Google Scholar 

  • Clemens, B., Cata, T., & Hackbarth, G. (2012). Mobile device considerations for supply chain and ERP related systems. Communications of the IBIMA, Article ID 151480, 16.

    Google Scholar 

  • Creswel, J. W. (2008). Educational research: Planning, conducting, and evaluating quantitative and qualitative research. Prentice Hall.

    Google Scholar 

  • Crutchfield, J. P., & Young, K. (1989). Inferring statistical complexity. Physical Review Letters, 62(2), 105–108.

    MathSciNet  CrossRef  Google Scholar 

  • Davis, M. M., Currey, J. M., Howk, S., DeSordi, M. R., Boise, L., & Fagnan, L. J. (2014). A qualitative study of rural primary care clinician views on remote monitoring technologies. Journal of Rural Health, 30(1), 69–78. https://doi.org/10.1111/jrh.12027 [Medline: 24383486]

  • Delbanco, T., Walker, J., Bell, S. K., Darer, J. D., Elmore, J. G., & Farag, N. (2012). Inviting patients to read their doctors’ notes: A quasi-experimental study and a look ahead. Annals of Internal Medicine, 157(7), 461–470. https://doi.org/10.7326/0003-4819-157-7-201210020-00002 [Medline: 23027317]

  • Denson, J. S., & Abrahamson, S. (1969). A computer-controlled patient simulator. JAMA, 208, 504–508.

    CrossRef  Google Scholar 

  • Dery, K., Grant, D., Harley, B., & Wright, C. (2006). Work organisation and enterprise resource planning systems: An alternative research agenda. New Technology, Workand Employment, 21(3), 199–214.

    CrossRef  Google Scholar 

  • Dillon, T., Wu, C., & Chang, E. (2010). Cloud computing: issues and challenges. In 24th IEEE International Conference on Advanced Information Networking and Applications (AINA), Perth, WA.

    Google Scholar 

  • Doyle-Lindrud, S. (2015). Watson will see you now: A supercomputer to help clinicians make informed treatment decisions. Clinical Journal of Oncology Nursing, 19(1), 31–32.

    CrossRef  Google Scholar 

  • Elali, W. (2021). The importance of strategic agility to business survival during corona crisis and beyond. International Journal of Business Ethics and Governance, 4(2), 1–8. https://doi.org/10.51325/ijbeg.v4i2.64.

  • Elmes, M., Strong, D., & Volkoff, O. (2005). Panoptic empowerment and reflective conformity in enterprise systems-enabled organisations. Information and Organisation, 15(1), 1–37.

    CrossRef  Google Scholar 

  • Er, O., Tanrikulu, A. Ç., & Abakay, A. (2015). Use of artificial intelligence techniques for diagnosis of malignant pleural mesothelioma. Dicle Medical Journal, 42(1), 5–11.

    CrossRef  Google Scholar 

  • Esteva, A., Kuprel, B., Novoa, R. A., Ko, J., Swetter, S. M., Blau, H. M., & Thrun, S. (2017). Dermatologistlevel classification of skin cancer with deep neural networks. Nature, 542(7639), 115.

    CrossRef  Google Scholar 

  • Fanning, R. M., & Gaba, D. M. (2007). The role of debriefing in simulationbased learning. Simulation in Healthcare, 2, 115–125.

    CrossRef  Google Scholar 

  • Flin, R., Yule, S., Paterson-Brown, S., Maran, N., Rowley, D., & Youngson, G. (2007). Teaching surgeons about non-technical skills. Surgeon, 2007(5), 86–89.

    CrossRef  Google Scholar 

  • Fu, Z., Sun, X., Ji, S., & Xie, G. (2016). Towards efficient content aware search over encrypted outsourced data in cloud. In The 35th Annual IEEE International Conference on Computer Communications, IEEE INFOCOM 2016, pp. 1–9. IEEE.

    Google Scholar 

  • Fu, Z., Sun, X., Liu, Q., Zhou, L., & Shu, J. (2015). Achieving efficient cloud search services: multi-keyword ranked search over encrypted cloud data supporting parallel computing. IEICE Transactions on Communications, 98(1), 190–200.

    Google Scholar 

  • Gaba, D. M., Howard, S. K., Flanagan, B., Smith, B. E., Fish, K. J., & Botney, R. (1998). Assessment of clinical performance during simulated crises using both technical and behavioral ratings. Anesthesiology, 1998(89), 8–18.

    CrossRef  Google Scholar 

  • Gaba DM. (2004). The future vision of simulation in health care. QualSaf Health Care, 13(Suppl 1), i2–10.

    Google Scholar 

  • Gnanasambandam, S. (2013). Enterprise mobility—10 critical success factors. Research at Infosys Labs, 2013. Retrieved from: https://www.infosysblogs.com/infosys-labs/2013/07/enterprise_mobility-tencrit.html.

  • Hashizume, K., Rosado, D., Fernández-Medina, E., & Fernandez, E. (2013). An analysis of security issues for cloud computing. Journal of Internet Services and Applications, 4(1), 1–13.

    CrossRef  Google Scholar 

  • Hayes, D. C., Hunton, J. E., & Reck, J. L. (2001). Market reaction to ERP implementation announcements. Journal of Information Systems, 15, 3–18.

    CrossRef  Google Scholar 

  • Hendy KC (2011). A tool for human factors accident investigation, classification and risk management. Defense R&D Canada, Toronto. Technical Report—DRDC Toronto TR 2002-057: 2003. Available from URL: https://i3pod.com/wp-content/uploads/2011/04/A-tool-for-human-factors-accident-invest-classificationrisk-management-K-C-Hendy.pdf. Accessed September 2012.

  • Implementing e-health in developing countries: Guidance and principles. https://www.itu.int/ITU-D/cyb/app/docs/e-Health_prefinal_15092008.PDF

  • Jiwa, M., Meng, X. (2013). Video consultation use by Australian general practitioners: video vignette study. Journal of Medical Internet Research, 15(6), e117. https://doi.org/10.2196/jmir.2638 [Medline: 23782753]

  • Johansson, B., & Ruivo, P. (2013). Exploring factors for adopting ERP as SaaS. Procedia Technology, 9(2013), 94–99.

    CrossRef  Google Scholar 

  • Johansson, B., Alajbegovic, A., Alexopoulo, V., & Desalermos, A. (2015). Cloud ERP adoption opportunities and concerns: The role of organizational size. In: 48th Hawaii International Conference on System Sciences (HICSS), Johansson, Kauai, HI, pp. 4211–4219.

    Google Scholar 

  • Jones, M. C., Clineand, M., Ryan, S. (2006). Exploring knowledge sharing in ERP implementation: An organisational culture framework. Decision Support Systems, 41(2), 411–434.

    Google Scholar 

  • Khan, N., Ashraf, A., Chowdhry, B., & Hashmani, M. (2009). Survey of challenges in hybrid optical wireless broadband network (HOW-B) for e-health systems. Paper Presented at the International Conference on Information and Communication Technologies, 2009. ICICT’09.

    Google Scholar 

  • Khan, O. F., Bebb, C., & Alimohamed, N. A. (2017). Artificial intelligence in medicine: what oncologists need to know about its potential and its limitations. Oncology Exchange, 16(4), 8–13.

    Google Scholar 

  • Krupinski, E. A. (2010). Current perspectives in medical image perception. Attention, Perception, & Psychophysics, 72(5), 1205–1217.

    Google Scholar 

  • Kurbel, K., Jankowska, A., & Nowakowski, K. (2006). A mobile user interface for an ERP system. Issues in Information Systems, VI, I(2), 146–151.

    Google Scholar 

  • Kumar, G., & Kalra, R. (2016). A Survey on machine learning techniques in health care industry. International Journal of Recent Research Aspects, 3(2), 128–132.

    Google Scholar 

  • Kumar, V., Garg, K. K., & Quan, C.-L. (2012). Migration of services to the cloud environment: Challenges and best practices. International Journal of Computer Applications, 55(1), 1–16.

    CrossRef  Google Scholar 

  • Lehmann, D., Faber, P. L., Galderisi, S., Herrmann, W. M., Kinoshita, T., Koukkou, M., … Koenig, T. (2006). EEG microstate duration and syntax in acute, medication-nave, first-episode schizophrenia: a multi-center study. Psychiatry Research: Neuroimaging, 138(2), 141156, 2005.

    Google Scholar 

  • Liddy, C., Rowan, M. S., Afkham, A., Maranger, J., & Keely, E. (2013). Building access to specialist care through e-consultation. Open Med, 7(1), e1–e8 [Medline: 23687533].

    Google Scholar 

  • Liu, J., Zhang, Z., Chen, X., & Kwak, K. S. (2014). Certificateless remote anonymous authentication schemes for wireless body area networks. IEEE Transactions on Parallel and Distributed Systems, 25(2), 332–342.

    CrossRef  Google Scholar 

  • Loc, H., Melody, M., Zachary, W., Takeo, H., & Ching-Fong, S. (2005). A prototype on RFID and sensor networks for elder healthcare: Progress report. In Proceedings of the 2005 ACM SIGCOMM Workshop on Experimental Approaches to Wireless Network Design and Analysis.

    Google Scholar 

  • Maani, R., Camorlinga, S., & Arnason, N. (2012). A parallel method to improve medical image transmission. Journal of Digital Imaging, 25(1), 101–109.

    CrossRef  Google Scholar 

  • Marko, H., & Maija, M.-K. (2007). Wireless system for patient home monitoring. Paper Presented at the Wireless Pervasive Computing, 2007. In 2nd International Symposium on ISWPC’07.

    Google Scholar 

  • Matos, R., Sargento, S., Hummel, K., Hess, A., Tutschku, K., & Meer, H. (2012). Context-based wireless mesh networks: A case fornetwork virtualization. Journal of Telecommunication Systems, 51(4), 259–272.

    Google Scholar 

  • Mira, J., & Delgado, A. E. (2006). A cybernetic view of artificial intelligence. Scientiae Mathematicae Japonicae, 64(2), 331–350.

    MathSciNet  MATH  Google Scholar 

  • Mirsky, J. B., Tieu, L., Lyles, C., & Sarkar, U. (2016). A mixed-methods study of patient-provider e-mail content in a safety-net setting. Journal of Health Communications, 21(1), 85–91. https://doi.org/10.1080/10810730.2015.1033118] [Medline: 26332306]

  • Navarro-Gonzalez, J., Lopez-Juarez, I., Rios-Cabrera, R., & Ordaz-Hernández, K. (2015). On-line knowledge acquisition and enhancement in robotic assembly tasks. Robotics and Computer-Integrated Manufacturing, 33, 78–89.

    CrossRef  Google Scholar 

  • Nishida, K., Morishima, Y., Yoshimura, M., Isotani, T., Irisawa, S., Jann, K., …. Koenig., T. (2013). EEG microstates associated with salience and frontoparietal networks in frontotemporal dementia, schizophrenia and Alzheimers disease. Clincial Neurophysiology, 124(6), 1106–1114.

    Google Scholar 

  • Ng, E. H. & Kim, H. W. (2009). Investigating information systems infusion and the moderating role of habit: a user empowerment perspective. In ICIS Proceedings, Phoenix, USA.

    Google Scholar 

  • North, F., Crane, S.J., Chaudhry, R., Ebbert, J.O., Ytterberg, K., Tulledge-Scheitel, S. M. (2014). Impact of patient portal secure messages and electronic visits on adult primary care office visits. Telemed Journal and E-Health, 20(3), 192–198. https://doi.org/10.1089/tmj.2013.0097

  • Oni, O., & Papazafeiropoulou, A. (2012). Diverse views on IT innovation diffusion among SMEs: influencing factors of broadband adoption. Information Systems Frontiers, 1–19.

    Google Scholar 

  • Panorama Consulting. Panorama Consulting. https://panoramaconsulting.com/ (21/12/2014)

  • Petter, S., DeLone, W., & McLean, E. (2008). Measuring information systems success: Models, dimensions, measures, and interrelationships. European Journal of Information Systems, 17(3), 236–263.

    CrossRef  Google Scholar 

  • Qiao, L., & Koutsakis, P. (2009). Fair and efficient scheduling for telemedicine traffic transmission over wireless cellular networks. Paper Presented at the IEEE 69th Vehicular Technology Conference, 2009. VTC Spring 2009.

    Google Scholar 

  • Qureshi, A., Shoeb, A., & Guttag, J. (2005). Building a high-quality mobile telemedicine system using network striping over dissimilar wireless wide area networks. In Proceedings of Annual Int’l Conference on IEEE Engineering in Medicine and Biology Society (Vol. 4, pp. 3942–3945)

    Google Scholar 

  • Ramaano, A. (2021). Potential of eco-tourism as a mechanism to buoy community livelihoods: The case of Musina Municipality, Limpopo, South Africa. Journal of Business and Socio-economic Development, 1(1), 47–70.

    Google Scholar 

  • Roh, J. J., Kunnathur, A., & Tarafdar, M. (2009). Classification of RFID adoption: An expected benefits approach. Information & Management, 46(6), 357–363.

    CrossRef  Google Scholar 

  • Rotariu, C., Pasarica, A., Costin, H., Adochiei, F., & Ciobotariu, R. (2011). Telemedicine system for remote blood pressure and heart rate monitoring. Paper Presented at the E-health and Bioengineering Conference (EHB), 2011.

    Google Scholar 

  • Russell, S., & Norvig P. (1995). Artificial intelligence—A modern approach. Englewood Cliffs: Prentice Hall. ISBN0-13-103805-2

    Google Scholar 

  • Shankarnarayanan, S. (2000). ERP systems using IT to gain a competitive advantage. https://www.expressindia.com/newads/bsl/advant.htm

  • Sahoo, P. K. (2012). Efficient security mechanisms for mhealth applications using wireless body sensor networks. Sensors, 12(9), 12606–12633.

    CrossRef  Google Scholar 

  • Savoldelli, G. L., Naik, V. N., Park, J., Joo, H. S., Chow, R., & Hamstra, S. J. (2006). Value of debriefing during simulated crisis management: Oral versus videoassisted oral feedback. Anesthesiology, 105, 279–85.

    Google Scholar 

  • Serdeira, A. P., Romão, M., & Rebelo, E. (2012). Advantages, limitations and solutions in the use of ERP systems (enterprise resource planning)—A case study in the hospitality industry.

    Google Scholar 

  • Sevean, P., Dampier, S., Spadoni, M., Strickland, S., & Pilatzke, S. (2009). Patients and families experiences with video telehealth in rural/remote communities in Northern Canada. Journal of Clinical Nursing, 18(18), 2573–2579. https://doi.org/10.1111/j.1365-2702.2008.02427.x [Medline: 19694885].

  • Shen, J., Tan, H., Moh, S., Chung, I., Liu, Q., & Sun, X. (2015). Enhanced secure sensor association and key management in wireless body area networks. Journal of Communications and Networks, 17(5), 453–462.

    CrossRef  Google Scholar 

  • Sheng, Q.,Li, X., & Zeadally, S. (2008). Enabling next-generation RFID applications: Solutions and challenges. IEEE Computer, 41(9), 21–28.

    Google Scholar 

  • Sheng, Q. Z., Zeadally, S., Luo, Z., Chung, J.-Y., & Maamar, Z. (2010). Ubiquitous RFID: Where are we? Information Systems Frontiers, 12(5), 485–490.

    CrossRef  Google Scholar 

  • Sisaye, S. (2021). The influence of non-governmental organizations (NGOs) on the development of voluntary sustainability accounting reporting rules. Journal of Business and Socio-economic Development, 1(1), 5–23.

    Google Scholar 

  • Steventon, A., Bardsley, M., Billings, J., Dixon, J., Doll, H., & Beynon, M. (2013). Effect of telecare on use of health and social care services: findings from the Whole Systems Demonstrator cluster randomised trial. Age Ageing, 42(4):501–508. https://doi.org/10.1093/ageing/aft008. [Medline: 23443509]

  • Steventon, A., Bardsley, M., Billings, J., Dixon, J., Doll, H., & Hirani, S. (2012). Whole system demonstrator evaluation team. Effect of telehealth on use of secondary care and mortality: Findings from the whole system demonstrator cluster randomised trial. British Medical Journal, 344, e3874. https://doi.org/10.1136/bmj.e3874. [Medline: 22723612]

  • Subashini, S., & Kavitha, V. (2011). A survey on security issues in service delivery models of cloud computing. Journal of Network and Computer Applications, 34(1), 1–11.

    CrossRef  Google Scholar 

  • Terry, H.P., Hulsing, J., Grant, M., Powell, D., Mubayi, P., & Syed, W. (2016). AI, Machine learning and data Fuel the future of productivity. The Golden Sachs Group, Inc. November 14.

    Google Scholar 

  • Uzelaltinbulata, S., Ugurb, B. (2017). Lung tumor segmentation algorithm. In 9th International Conference on Theory and Application of Soft Computing, Computing with Words and Perception, ICSCCW 2017, August 22–23, 2017, Budapest, Hungary.

    Google Scholar 

  • Vaquero, L. M., Rodero-Merino, L., Caceres, J., & Lindner, M. (2008). A break in the clouds: Towards a cloud definition. ACM SIGCOMM Computer Communication Review, 39(1), 50–55.

    CrossRef  Google Scholar 

  • Varshney, U. (2005). Pervasive healthcare: Applications, challenges and wireless solutions. Communications of the Association for Information Systems, 16(1), 3.

    Google Scholar 

  • VTD-XML. https://vtd-xml.sourceforge.net/persistence.html (21/12/2014)

  • Vijendra, S. (2011). Efficient clustering for high dimensional data: Subspace based clustering and density based clustering. Information Technology Journal, 10(6), 1092–1105.

    CrossRef  Google Scholar 

  • WHO. (2009). Telemedicine: Opportunities and developments in member. States: report on the second global survey on eHealth.

    Google Scholar 

  • Williams, J. C. (1988). A data-based method for assessing and reducing human error to improve operational performance. In Monterey, CA, USA: IEEE Fourth Conference on Human Factors and Power Plants, pp. 436–450

    Google Scholar 

  • Wu, I. L., Li, J. Y., & Fu, C. Y. (2011). The adoption of mobile healthcare by hospital’s professionals: An integrative perspective. Decision Support Systems, 51(3), 587–596.

    CrossRef  Google Scholar 

  • Wun-Jae, K. (2018). Knowledge-based diagnosis and prediction using big data and deep learning in precision medicine. Investigative and Clinical Urology, 59(2), 69–71.

    CrossRef  Google Scholar 

  • Xia, Z., Wang, X., Zhang, L., Qin, Z., Sun, X., & Ren, K. (2016). A privacy-preserving and copy-deterrence content-based image retrieval scheme in cloud computing. IEEE Transactions on Information Forensics and Security, 11(11), 2594–2608.

    CrossRef  Google Scholar 

  • Yao-Jen, C., Chien-Nien, C., Li-Der, C., & Tsen-Yung, W. (2008). A novel indoor way finding system based on passive RFID for individuals with cognitive impairments. In Second International Conference on Pervasive Computing Technologies for Healthcare (PervasiveHealth 2008) (pp. 108–111).

    Google Scholar 

  • Yin, B. (2017). Description of nodule detection for LUNA 2016. Retrieved from https://luna16.grand-challenge.org/serve/public_html/pdfs/20170817_020245_iFLYTEK-MIG_NDET.pdf

  • Youssef, J. & Diab, S. (2021). Does quality of governance contribute to the heterogeneity in happiness levels across MENA countries? Journal of Business and Socio-economic Development, 1(1), 87–101.

    Google Scholar 

  • Zambrano, A., & Garcia Betances, R. (2012). Municipal communications infrastructure for rural telemedicine in a Latin-American country. Latin America Transactions, IEEE (Revista IEEE America Latina), 10(2), 1489–1495.

    Google Scholar 

  • Zhang, Y., Ansari, N., & Tsunoda, H. (2010). Wireless telemedicine services over integrated IEEE 802.11/WLAN and IEEE 802.16/WiMAX networks. IEEE Wireless Communications, 17(1), 30–36.

    Google Scholar 

  • Zhao, Z. (2014). An efficient anonymous authentication scheme for wireless body area networks using elliptic curve cryptosystem. Journal of Medical Systems, 38(2), 1–7.

    CrossRef  Google Scholar 

  • Zhuang, Y., Jiang, N., Wu, Z., & Li, Q. (2014). Efficient and robust large medical image retrieval in mobile cloud computing environment. Information Sciences (INS), 263, 60–86.

    CrossRef  Google Scholar 

  • Zhuoran, W., Shah, A. D., & Tate, A. R. (2012). Extracting diagnoses and investigation results from unstructured text in electronic health records by semi-supervised machine learning. PLoS ONE, 7(1), 1–9.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Naqi, M., AL-Hashimi, M., Hamdan, A. (2021). Impact of Innovative Technologies in Healthcare Organization Productivity with ERP. In: Hamdan, A., Hassanien, A.E., Khamis, R., Alareeni, B., Razzaque, A., Awwad, B. (eds) Applications of Artificial Intelligence in Business, Education and Healthcare . Studies in Computational Intelligence, vol 954. Springer, Cham. https://doi.org/10.1007/978-3-030-72080-3_18

Download citation