Skip to main content

Hierarchical Nanostructures for Photocatalytic Applications

  • Chapter
  • First Online:
Nanostructured Materials for Environmental Applications

Abstract

Hierarchical nanostructure-based photocatalysis has received great attention in the recent years owing to its high efficiency in treating energy- and environmental-related issues. In order to develop the best photocatalysts, different metal oxide semiconductors have been utilized to examine suitable hierarchical structures. This chapter comprises the basic concepts of hierarchical nanostructures, fabrication strategies and significant applications related to energy and environmental fields. Particularly, this chapter portrays the novel synthesis techniques such as precipitation synthesis, hydrothermal method, solvothermal method, microwave treatment and metal-organic framework-directed synthesis approach for the preparation of metal oxide-based hierarchical nanostructures. Finally, some key applications like photocatalytic water remediation, photocatalytic hydrogen fuel production and photocatalytic carbon dioxide are summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Li, X., Wen, J., Low, J., Fang, Y., & Yu, J. (2014). Science China Materials, 57, 70–100. https://doi.org/10.1007/s40843-014-0003-1.

    Article  Google Scholar 

  2. Li, X., Yu, J., Low, J., Fang, Y., Xiao, J., & Chen, X. (2015). Journal of Materials Chemistry A, 3, 2485–2534. https://doi.org/10.1039/C4TA04461D.

    Article  CAS  Google Scholar 

  3. Bard, & Fox, M. (1995). Accounts of Chemical Research, 28, 141–145. https://doi.org/10.1021/ar00051a007.

    Article  CAS  Google Scholar 

  4. Hoffmann, M., Martin, S., Choi, W., & Bahnemann, D. (1995). Chemical Reviews, 95, 69–96. https://doi.org/10.1021/cr00033a004.

    Article  CAS  Google Scholar 

  5. Kudo, & Miseki, Y. (2009). Chemical Society Reviews, 38, 253–278. https://doi.org/10.1039/B800489G.

    Article  CAS  Google Scholar 

  6. R. Ajay Rakkesh, D. Durgalakshmi & S. Balakumar (2017) John Wiley and Scrivener Publishing, USA (ISBN: 978-1-119-16034-2).

    Google Scholar 

  7. R. Ajay Rakkesh, D. Durgalakshmi & S. Balakumar (2017) Springer-Nature, USA (ISBN: 978-3-319-62446-4).

    Google Scholar 

  8. Chen, X., Shen, S., Guo, L., & Mao, S. S. (2010). Chemical Reviews, 110, 6503–6570. https://doi.org/10.1021/cr1001645.

    Article  CAS  Google Scholar 

  9. Lang, X., Chen, X., & Zhao, J. (2014). Chemical Society Reviews, 43, 473–486. https://doi.org/10.1039/C3CS60188A.

    Article  CAS  Google Scholar 

  10. Fujishima, A., & Honda, K. (1972). Nature, 238, 37–38. https://doi.org/10.1038/238037a0.

    Article  CAS  Google Scholar 

  11. Rajeshwar, K. (2007). Journal of Applied Electrochemistry, 37, 765–787. https://doi.org/10.1007/s10800-007-9333-1.

    Article  CAS  Google Scholar 

  12. Maeda, K. (2011). Journal of Photochemistry and Photobiology C, 12, 237–268. https://doi.org/10.1016/j.jphotochemrev.2011.07.001.

    Article  CAS  Google Scholar 

  13. Ajay Rakkesh, R., Durgalakshmi, D., Karthe, P., & Balakumar, S. (2020). Materials Chemistry and Physics. https://doi.org/10.1016/j.matchemphys.2020.122720.

  14. Ajay Rakkesh, R., Durgalakshmi, D., Karthe, P., & Balakumar, S. (2019). Journal of Processing and Application of Ceramics, 13, 376–386. https://doi.org/10.2298/PAC1904376A.

    Article  Google Scholar 

  15. Ajay Rakkesh, R., Durgalakshmi, D., & Balakumar, S. (2018). ChemistrySelect, 3, 7302–7309. https://doi.org/10.1002/slct.201800987.

    Article  CAS  Google Scholar 

  16. Hisatomi, T., Kubota, J., & Domen, K. (2014). Chemical Society Reviews, 43, 7520–7535. https://doi.org/10.1039/C3CS60378D.

    Article  CAS  Google Scholar 

  17. Moriya, Y., Takata, T., & Domen, K. (2013). Coordination Chemistry Reviews, 257, 1957–1969. https://doi.org/10.1016/j.ccr.2013.01.021.

    Article  CAS  Google Scholar 

  18. Pelaez, M., Nolan, N. T., Pillai, S. C., Seery, M. K., Falaras, P., Kontos, A. G., Dunlop, P. S. M., Hamilton, J. W. J., Byrne, J. A., O’Shea, K., Entezari, M. H., & Dionysiou, D. D. (2012). Applied Catalysis B: Environmental, 125, 331–349. https://doi.org/10.1016/j.apcatb.2012.05.036.

    Article  CAS  Google Scholar 

  19. Di Paola, E., Garcia-Lopez, G., Marci, G., & Palmisano, L. (2012). Journal of Hazardous Materials, 211, 3–292.

    Article  Google Scholar 

  20. Martha, S., Sahoo, P. C., & Parida, K. M. (2015). RSC Advances, 5, 61535–61553. https://doi.org/10.1039/C5RA11682A.

    Article  CAS  Google Scholar 

  21. Rani, R., Reddy, U., Sharma, P., Mukerjee, P., Mishra, A. K., & Sim, L. C. (2018). Journal of Nanostructure in Chemistry, 8, 255–291.

    Article  CAS  Google Scholar 

  22. Li, H., Zhou, Y., Tu, W., Ye, J., & Zou, Z. (2015). Advanced Functional Materials, 25, 998–1013. https://doi.org/10.1002/adfm.201401636.

    Article  CAS  Google Scholar 

  23. Li, H., Tu, W., Zhou, Y., & Zou, Z. (2016). Advancement of Science, 3, 1500389.

    Google Scholar 

  24. Ohtani, B. (2010). Journal of Photochemistry and Photobiology C Photochemistry Reviews, 11, 157–178. https://doi.org/10.1016/j.jphotochemrev.2011.02.001.

    Article  CAS  Google Scholar 

  25. Pallavi, N., & Shivaraju, H. P. (2017). International Journal of Nanotechnology, 14, 762–774. https://doi.org/10.1504/IJNT.2017.086762.

    Article  CAS  Google Scholar 

  26. Lewis, N. S., & Nocera, D. G. (2006). Proceedings of the National Academy of Sciences of the United States of America, 103, 15729. https://doi.org/10.1073/pnas.0603395103.

    Article  CAS  Google Scholar 

  27. Walter, M. G., Warren, E. L., McKone, J. R., Boettcher, S. W., Mi, Q., Santori, E. A., & Lewis, N. S. (2010). Chemical Reviews, 110, 6446. https://doi.org/10.1021/cr1002326.

    Article  CAS  Google Scholar 

  28. Gasteiger, H. A., Kocha, S. S., Sompalli, B., & Wagner, F. T. (2005). Applied Catalysis B: Environmental, 56, 9. https://doi.org/10.1016/j.apcatb.2004.06.021.

    Article  CAS  Google Scholar 

  29. Gasteiger, H. A., & Marković, N. M. (2009). Science, 324, 48. https://doi.org/10.1126/science.1172083.

    Article  CAS  Google Scholar 

  30. Osterloh, F. E. (2013). Chemical Society Reviews, 42, 2294. https://doi.org/10.1039/C2CS35266D.

    Article  CAS  Google Scholar 

  31. Wang, Z. L. (2004). Materials Today, 7, 26–33. https://doi.org/10.1016/S1369-7021(04)00286-X.

    Article  CAS  Google Scholar 

  32. Xu, S., & Wang, Z. L. (2011). Nano Research, 4, 1013–1098. https://doi.org/10.1007/s12274-011-0160-7.

    Article  CAS  Google Scholar 

  33. Burke-Govey, C. P., & Plank, N. O. V. (2013). Journal of Vacuum Science and Technology B, 31, 06F101. https://doi.org/10.1116/1.4821801.

    Article  CAS  Google Scholar 

  34. Sun, H., Yu, Y., Luo, J., Ahmad, M., & Zhu, J. (2012). CrystEngComm, 14, 8626–8632. https://doi.org/10.1039/c2ce26157j.

    Article  CAS  Google Scholar 

  35. Alenezi, M. R., Henley, S. J., Emerson, N. G., & Silva, S. R. (2014). Nanoscale, 6, 235–247. https://doi.org/10.1039/C3NR04519F.

    Article  CAS  Google Scholar 

  36. Liu, X., Zhao, J., Cao, Y., Li, W., Sun, Y., Lu, J., Men, Y., & Hu, J. (2015). RSC Advances, 5, 47506–47510. https://doi.org/10.1039/C5RA05231A.

    Article  CAS  Google Scholar 

  37. Ma, Y., Bian, Y., Liu, Y., Zhu, A., Wu, H., Cui, H., Chu, D., & Pan, J. (2018). ACS Sustainable Chemistry & Engineering, 6, 2552–2562.

    Article  CAS  Google Scholar 

  38. Ray, C., & Pal, T. (2017). Journal of Materials Chemistry A, 5, 9465–9487; Li, J., Zhang, M., Li, X., Li, Q., & Yang (2017). Journal of Applied Catalysis B, 212, 106–114. https://doi.org/10.1039/C7TA02116J.

    Article  CAS  Google Scholar 

  39. Zou, X., & Zhang, Y. (2015). Chemical Society Reviews, 44, 5148–5180. https://doi.org/10.1039/C4CS00448E.

    Article  CAS  Google Scholar 

  40. Zhang, H., Lv, X., Li, Y., Wang, Y., & Li, J. (2010). ACS Nano, 4, 380–386.

    Article  CAS  Google Scholar 

  41. Alivisatos, P. (1996). Science, 271, 933–937.

    Article  CAS  Google Scholar 

  42. Hu, X., Yu, J. C., Gong, J., & Li, Q. (2007). Crystal Growth & Design, 7, 2444–2448. https://doi.org/10.1021/cg060767o.

    Article  CAS  Google Scholar 

  43. Ho, W., Yu, J. C., & Lee, S. (2006). Chemical Communications, 1115–1117. https://doi.org/10.1039/b515513d.

  44. Sing, K., Everett, D., Haul, R., Moscou, L., Pierotti, R., Rouquerol, J., & Siemieniewska, T. (1985). Pure and Applied Chemistry, 57, 603–619. https://doi.org/10.1351/pac198557040603.

    Article  CAS  Google Scholar 

  45. Rolison, D. R. (2003). Science, 299, 1698–1701. https://doi.org/10.1126/science.1082332.

    Article  CAS  Google Scholar 

  46. Zhou, W., & Fu, H. (2013). ChemCatChem, 5, 885–894. https://doi.org/10.1002/cctc.201200519.

    Article  CAS  Google Scholar 

  47. Li, G., Zhang, D., & Yu, J. C. (2008). Chemistry of Materials, 20, 3983–3992. https://doi.org/10.1021/cm800236z.

    Article  CAS  Google Scholar 

  48. Du, J., Lai, X., Yang, N., Zhai, J., Kisailus, D., Su, F., Wang, D., & Jiang, L. (2011). ACS Nano, 5, 590–596.

    Article  CAS  Google Scholar 

  49. X. C. Wang, J. C. Yu, C. M. Ho, Y. D. Hou & X. Z. Fu, Langmuir, 2005, 21, 2552–2559, DOI: 10.1021/la047979c.

    Google Scholar 

  50. Xi, G. C., & Ye, J. H. (2010). Chemistry: A European Journal, 16, 8719–8725. https://doi.org/10.1002/chem.200903380.

    Article  CAS  Google Scholar 

  51. Yu, J., Su, Y., & Cheng, B. (2007). Advanced Functional Materials, 17, 1984–1990. https://doi.org/10.1002/adfm.200600933.

    Article  CAS  Google Scholar 

  52. Yuan, Z. Y., Ren, T. Z., & Su, B. L. (2003). Advanced Materials, 15, 1462–1465. https://doi.org/10.1002/adma.200305075.

    Article  CAS  Google Scholar 

  53. Cheng, C., & Fan, H. J. (2012). Nano Today, 7, 327–343. https://doi.org/10.1016/j.nantod.2012.06.002.

    Article  CAS  Google Scholar 

  54. Liu, S., Yang, M.-Q., Tang, Z.-R., & Xu, Y.-J. (2014). Nanoscale, 6, 7193–7198. https://doi.org/10.1039/c4nr01227e.

    Article  CAS  Google Scholar 

  55. Xiao, F.-X., Hung, S.-F., Tao, H. B., Miao, J., Yang, H. B., & Liu, B. (2014). Nanoscale, 6, 14950–14961. https://doi.org/10.1039/C4NR04886E.

    Article  CAS  Google Scholar 

  56. Ajay Rakkesh, R., Durgalakshmi, D., & Balakumar, S. (2016). RSC Advances, 6, 34342–34349. https://doi.org/10.1039/C6RA01784C.

    Article  CAS  Google Scholar 

  57. Ajay Rakkesh, R., Durgalakshmi, D., & Balakumar, S. (2015). RSC Advances, 5, 18633–18641. https://doi.org/10.1039/C5RA00180C.

    Article  CAS  Google Scholar 

  58. Zhao, Y., Wang, W., Li, Y., Zhang, Y., Yan, Z., & Huo, Z. (2014). Nanoscale, 6, 195–198. https://doi.org/10.1039/C3NR04280D.

    Article  CAS  Google Scholar 

  59. Jiao, Y., Liu, Y., Qu, F., & Wu, X. (2014). CrystEngComm, 16, 575–580. https://doi.org/10.1039/C3CE41994K.

    Article  CAS  Google Scholar 

  60. Xiang, Q., Yu, J., & Jaroniec, M. (2011). Chemical Communications, 47, 4532–4534. https://doi.org/10.1039/c1cc10501a.

    Article  CAS  Google Scholar 

  61. Athauda, T. J., Neff, J. G., Sutherlin, L., Butt, U., & Ozer, R. R. (2012). ACS Applied Materials & Interfaces, 4, 6916–6925.

    Article  Google Scholar 

  62. Han, C., Chen, Z., Zhang, N., Colmenares, J. C., & Xu, Y.-J. (2015). Advanced Functional Materials, 25, 221–229. https://doi.org/10.1002/adfm.201402443.

    Article  CAS  Google Scholar 

  63. D. Chatterjee & S. Dasgupta, Journal of Photochemistry and Photobiology C, 2005, 6, 186–205, DOI: 10.1016/j.jphotochemrev.2005.09.001.

    Google Scholar 

  64. Xu, D., Cheng, B., Cao, S., & Yu, J. (2015). Applied Catalysis B: Environmental, 164, 380–388. https://doi.org/10.1016/j.apcatb.2014.09.051.

    Article  CAS  Google Scholar 

  65. Liu, Y., Wang, R., Yang, Z., Du, H., Jiang, Y., Shen, C., Liang, K., & Xu, A. (2015). Chinese Journal of Catalysis, 36, 2135–2144. https://doi.org/10.1016/S1872-2067(15)60985-8.

    Article  CAS  Google Scholar 

  66. Xiong, T., Zhang, H., Zhang, Y., & Dong, F. (2015). Chinese Journal of Catalysis, 36, 2155–2163. https://doi.org/10.1016/S1872-2067(15)60980-9.

    Article  CAS  Google Scholar 

  67. Yu, C., Bai, Y., He, H., Fan, W., Zhu, L., & Zhou, W. (2015). Chinese Journal of Catalysis, 36, 2178–2185. https://doi.org/10.1016/S1872-2067(15)61009-9.

    Article  CAS  Google Scholar 

  68. Wang, X., Yu, R., Wang, K., Yang, G., & Yu, H. (2015). Chinese Journal of Catalysis, 36, 2211–2218.

    Google Scholar 

  69. Zhang, X., Zhu, Y., Yang, X., Zhou, Y., Yao, Y., & Li, C. (2014). Nanoscale, 6, 5971–5979. https://doi.org/10.1039/C4NR00975D.

    Article  CAS  Google Scholar 

  70. Ai, Z. H., Zhang, L. Z., Lee, S. C., & Ho, W. K. (2009). Journal of Physical Chemistry C, 113, 20896–20902. https://doi.org/10.1021/jp9083647.

    Article  CAS  Google Scholar 

  71. Ma, B., Guo, J., Dai, W.-L., & Fan, K. (2012). Applied Catalysis B: Environmental, 123, 193–199.

    Article  Google Scholar 

  72. Shen, Z., Chen, G., Wang, Q., Yu, Y., Zhou, C., & Wang, Y. (2012). Nanoscale, 4, 2010–2017. https://doi.org/10.1039/c2nr12045c.

    Article  CAS  Google Scholar 

  73. Sun, M., Yan, Q., Yan, T., Li, M., Wei, D., Wang, Z., Wei, Q., & Du, B. (2014). RSC Advances, 4, 31019–31027. https://doi.org/10.1039/C4RA03843F.

    Article  CAS  Google Scholar 

  74. Xing, C., Zhang, Y., Wu, Z., Jiang, D., & Chen, M. (2014). Dalton Transactions, 43, 2772–2780. https://doi.org/10.1039/C3DT52875H.

    Article  CAS  Google Scholar 

  75. Dong, F., Sun, Y., Fu, M., Wu, Z., & Lee, S. C. (2012). Journal of Hazardous Materials, 219, 26–34.

    Article  Google Scholar 

  76. Guzman, S. S., Jayan, B. R., de la Rosa, E., Castro, A. T., Gonalez, V. G., & Yacaman, M. J. (2009). Materials Chemistry and Physics, 115, 172–178. https://doi.org/10.1016/j.matchemphys.2008.11.030.

    Article  CAS  Google Scholar 

  77. Zhu, L., Li, Y., & Zeng, W. (2017). Applied Surface Science, 427, 281–287.

    Article  Google Scholar 

  78. Xiao, B., Zhao, Q., Xiao, C., Yang, T., Wang, P., Wang, F., Chen, X., & Zhang, M. (2015). CrystEngComm. https://doi.org/10.1039/C5CE00870K.

  79. Zhu, P., Zhang, J., Wu, Z., & Zhang, Z. (2008). Crystal Growth and Design, 8, 3148–3153. https://doi.org/10.1021/cg0704504.

    Article  CAS  Google Scholar 

  80. Zhang, S. L., Guan, B. Y., Wu, H. B., & Lou, X. W. D. (2018). Nano-Micro Letters, 10, 44.

    Article  Google Scholar 

  81. Liu, J., Li, J., Wei, F., Zhao, X., Su, Y., & Han, X. (2019). ACS Sustainable Chemistry & Engineering, 7, 11258–11266. https://doi.org/10.1021/acssuschemeng.9b00610.

    Article  CAS  Google Scholar 

  82. Zhang, M., Shao, C., Guo, Z., Zhang, Z., Mu, J., Cao, T., & Liu, Y. (2011). ACS Applied Materials & Interfaces, 3, 369–377. https://doi.org/10.1021/am100989a.

    Article  CAS  Google Scholar 

  83. Wang, S., Guan, B. Y., & Wen, X. (2018). Journal of the American Chemical Society. https://doi.org/10.1021/jacs.8b02200.

  84. Jung, H., Cho, K. M., Kim, K. H., Yoo, H. W., Saggaf, A. A., Gereige, I., & Jung, H. T. (2018). ACS Sustainable Chemistry & Engineering. https://doi.org/10.1021/acssuschemeng.8b00002.

  85. K. S. Ranjith, D. R. Kumar, Y. S. Huh, Y. K. Han, T. Uyar & R. T. R. Kumar (2020). https://doi.org/10.1021/acs.jpcc.9b09666.

  86. Li, G., Huang, J., Xue, C., Chen, J., Deng, Z., Huang, Q., Liu, Z., Gong, C., Guo, W., & Cao, R. (2019). Crystal Growth & Design. https://doi.org/10.1021/acs.cgd.9b00495.

  87. Ajay Rakkesh, R., & Balakumar, S. (2015). Journal of Nanoscience and Nanotechnology, 15, 4316–4324. https://doi.org/10.1166/jnn.2015.9723.

    Article  CAS  Google Scholar 

  88. Ajay Rakkesh, R., Durgalakshmi, D., & Balakumar, S. (2015). AIP Conference Proceedings, 1665, 050036.

    Article  Google Scholar 

  89. Ajay Rakkesh, R., Durgalakshmi, D., & Balakumar, S. (2014). Journal of Materials Chemistry C, 2, 6827–6834. https://doi.org/10.1039/C4TC01195C.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rakkesh, R.A., Dhinasekaran, D., Shankar, M.V., Balakumar, S. (2021). Hierarchical Nanostructures for Photocatalytic Applications. In: Balakumar, S., Keller, V., Shankar, M. (eds) Nanostructured Materials for Environmental Applications. Springer, Cham. https://doi.org/10.1007/978-3-030-72076-6_3

Download citation

Publish with us

Policies and ethics