Skip to main content

Nanostructured Heterojunction (1D-0D and 2D-0D) Photocatalysts for Environmental Remediation

  • Chapter
  • First Online:
Nanostructured Materials for Environmental Applications

Abstract

Global warming and environmental pollution are the most important problems or challenges present in the scientific community. To successfully tackle the environmental problems, the novel nanotechnologies that work with efficient nanomaterials are the only way. Therefore, the development of nanomaterials and their composites with heterojunctions has made great demand in view of the environmental remediation. Hence in this book chapter we have focused on the development of various heterojunction nanomaterials including 1D-0D and 2D-0D heterojunction photocatalysts comprising of various metal oxides and metals for environmental remediation, organic dye degradation, wastewater treatment, air purification, and antibacterial treatments. The 1D-0D heterojunctions consisting of 1D nanostructures like TiO2 nanotubes, nanobelts, ZnO nanorods, metal oxide nanowires with 0D metals, and metal oxides of Cu, CuxO, MnO2, Ag, Ag2O, Au, Pt, etc. were reported emphasizing the special properties associated with the nanostructures like high surface area, abundant active sites, and efficient charge transfer across the interface of the heterojunction. Followed by 2D-0D heterojunctions associated with g-C3N4, rGO and GO nanosheets coupled with metal oxides of Ag2O, Cu2O, ZnO, In2O3, MoO3, V2O5, and TiO2 and various transition and noble metals of Cu, Ag, Au, Pt, Pd, etc. were also reported. The important properties associated with the 2D nanosheets like high surface area and higher electron transport properties and special properties of nanometals like SPR effect and a greater number of active sites on the surface of the nanometal particles were highlighted. Various characterization techniques to investigate the physicochemical properties of those nanomaterials were reported. For example, HR-TEM, XRD, DRS UV-Vis, PL spectra, time-resolved PL spectra, transient photocurrent densities, XPS, etc. are studied which were helpful to investigate the higher photocatalytic efficiencies. Finally, the summary and future prospects of these heterojunction photocatalysts and further improvements are summarized. Therefore, this book chapter will give an overview of different types of heterojunction photocatalysts and their properties associated with improving the catalytic properties for a wide range of readers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Shanker, U., Rani, M., & Jassal, V. (2017). Degradation of hazardous organic dyes in water by nanomaterials. Environmental Chemistry Letters, 15(4), 623–642. https://doi.org/10.1007/s10311-017-0650-2.

    Article  CAS  Google Scholar 

  2. Sudrajat, H., & Babel, S. (2016). Rapid photocatalytic degradation of the recalcitrant dye amaranth by highly active N-WO3. Environmental Chemistry Letters, 14(2), 243–249. https://doi.org/10.1007/s10311-015-0538-y.

    Article  CAS  Google Scholar 

  3. Ren, X., Chen, C., Nagatsu, M., & Wang, X. (2011). Carbon nanotubes as adsorbents in environmental pollution management: a review. Chemical Engineering Journal, 170(2), 395–410. https://doi.org/10.1016/j.cej.2010.08.045.

    Article  CAS  Google Scholar 

  4. Ahmed, S. N., & Haider, W. (2018). Heterogeneous photocatalysis and its potential applications in water and wastewater treatment: a review. Nanotechnology, 29(34), 342001. https://doi.org/10.1088/1361-6528/aac6ea.

    Article  CAS  Google Scholar 

  5. Gaya, U. I., & Abdullah, A. H. (2008). Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: a review of fundamentals, progress and problems. Journal of Photochemistry and Photobiology C: Photochemistry Review, 9(1), 1–12. https://doi.org/10.1016/j.jphotochemrev.2007.12.003.

    Article  CAS  Google Scholar 

  6. Zhao, Z., Dai, Y., Lin, J., & Wang, G. (2014). Highly-ordered mesoporous carbon nitride with ultrahigh surface area and pore volume as a superior dehydrogenation catalyst. Chemistry of Materials, 26(10), 3151–3161. https://doi.org/10.1021/cm5005664.

    Article  CAS  Google Scholar 

  7. Zhao, Y., Hoivik, N., & Wang, K. (2016). Recent advance on engineering titanium dioxide nanotubes for photochemical and photoelectrochemical water splitting. Nano Energy, 30, 728–744. https://doi.org/10.1016/j.nanoen.2016.09.027.

    Article  CAS  Google Scholar 

  8. Tian, J., Zhao, Z., Kumar, A., Boughton, R. I., & Liu, H. (2014). Recent progress in design, synthesis, and applications of one-dimensional TiO2 nanostructured surface heterostructures: a review. Chemical Society Reviews, 43(20), 6920–6937. https://doi.org/10.1039/C4CS00180J.

    Article  CAS  Google Scholar 

  9. Osman, H., Su, Z., & Ma, X. (2017). Efficient photocatalytic degradation of rhodamine B dye using ZnO/graphitic C3N4 nanocomposites synthesized by microwave. Environmental Chemistry Letters, 15(3), 435–441. https://doi.org/10.1007/s10311-017-0604-8.

    Article  CAS  Google Scholar 

  10. Lakshmanareddy, N., Navakoteswara Rao, V., Cheralathan, K. K., Subramaniam, E. P., & Shankar, M. V. (2019). Pt/TiO2 Nanotube photocatalyst—effect of synthesis methods on valance state of Pt and its influence on hydrogen production and dye degradation. Journal of Colloid and Interface Science, 538, 83–98. https://doi.org/10.1016/j.jcis.2018.11.077.

    Article  CAS  Google Scholar 

  11. Mueller, U., Schubert, M., Teich, F., Puetter, H., Schierle-Arndt, K., & Pastré, J. (2006). Metal–organic frameworks—prospective industrial applications. Journal of Materials Chemistry, 16(7), 626–636. https://doi.org/10.1039/B511962F.

    Article  CAS  Google Scholar 

  12. Taseidifar, M., Makavipour, F., Pashley, R. M., & Rahman, A. F. M. M. (2017). Removal of heavy metal ions from water using ion flotation. Environmental Technology and Innovation, 8, 182–190. https://doi.org/10.1016/j.eti.2017.07.002.

    Article  Google Scholar 

  13. Turhanen, P. A., Vepsäläinen, J. J., & Peräniemi, S. (2015). Advanced material and approach for metal ions removal from aqueous solutions. Scientific Reports, 5(1), 8992. https://doi.org/10.1038/srep08992.

    Article  CAS  Google Scholar 

  14. Chinnakoti, P., Vankayala, R. K., Chunduri, A. L. A., Nagappagari, L. R., Muthukonda, S. V., & Kamisetti, V. (2016). Trititanate Nanotubes as highly efficient adsorbent for fluoride removal from water: adsorption performance and uptake mechanism. Journal of Environmental Chemical Engineering, 4(4), 4754–4768. https://doi.org/10.1016/j.jece.2016.11.007.

    Article  CAS  Google Scholar 

  15. Chinnakoti, P., Chunduri, A. L. A., Vankayala, R. K., Patnaik, S., & Kamisetti, V. (2017). Enhanced fluoride adsorption by nano crystalline γ-alumina: adsorption kinetics, isotherm modeling and thermodynamic studies. Applied Water Science, 7(5), 2413–2423. https://doi.org/10.1007/s13201-016-0437-9.

    Article  CAS  Google Scholar 

  16. Singh, J., Singh, P., & Singh, A. (2016). Fluoride ions vs removal technologies: a study. Arabian Journal of Chemistry, 9(6), 815–824. https://doi.org/10.1016/j.arabjc.2014.06.005.

    Article  CAS  Google Scholar 

  17. Lang, X., Chen, X., & Zhao, J. (2014). Heterogeneous visible light photocatalysis for selective organic transformations. Chemical Society Reviews, 43(1), 473–486. https://doi.org/10.1039/C3CS60188A.

    Article  CAS  Google Scholar 

  18. Shiraishi, Y., & Hirai, T. (2008). Selective organic transformations on titanium oxide-based photocatalysts. Journal of Photochemistry and Photobiology C: Photochemistry Review, 9(4), 157–170. https://doi.org/10.1016/j.jphotochemrev.2008.05.001.

    Article  CAS  Google Scholar 

  19. Wang, C., & Lu, Z. (2015). Catalytic enantioselective organic transformations via visible light photocatalysis. Organic Chemistry Frontiers, 2(2), 179–190. https://doi.org/10.1039/C4QO00306C.

    Article  CAS  Google Scholar 

  20. Wang, W., Niu, Q., Zeng, G., Zhang, C., Huang, D., Shao, B., Zhou, C., Yang, Y., Liu, Y., Guo, H., et al. (2020). 1D Porous tubular G-C3N4 capture black phosphorus quantum dots as 1D/0D metal-free photocatalysts for oxytetracycline hydrochloride degradation and hexavalent chromium reduction. Applied Catalysis B: Environmental, 273, 119051. https://doi.org/10.1016/j.apcatb.2020.119051.

    Article  CAS  Google Scholar 

  21. Wang, K., Zhang, G., Li, J., Li, Y., & Wu, X. (2017). 0D/2D Z-Scheme heterojunctions of bismuth tantalate quantum dots/ultrathin g-C3N4 nanosheets for highly efficient visible light photocatalytic degradation of antibiotics. ACS Applied Materials & Interfaces, 9(50), 43704–43715. https://doi.org/10.1021/acsami.7b14275.

    Article  CAS  Google Scholar 

  22. Gao, H., Yang, H., Xu, J., Zhang, S., & Li, J. (2018). Strongly coupled G-C3N4 Nanosheets-Co3O4 quantum dots as 2D/0D heterostructure composite for peroxymonosulfate activation. Small, 14(31), 1801353. https://doi.org/10.1002/smll.201801353.

    Article  CAS  Google Scholar 

  23. Liu, R., Duay, J., & Lee, S. B. (2011). Heterogeneous nanostructured electrode materials for electrochemical energy storage. Chemical Communications, 47(5), 1384–1404. https://doi.org/10.1039/C0CC03158E.

    Article  CAS  Google Scholar 

  24. Lakshmana Reddy, N., Cheralathan, K. K., Durga Kumari, V., Neppolian, B., Muthukonda Venkatakrishnan, S., Cheralathan, K. K., Durga Kumari, V., Neppolian, B., & Muthukonda Venkatakrishnan, S. (2018). Photocatalytic reforming of bio-mass derived crude glycerol in water: a sustainable approach for improved hydrogen generation using Ni(OH)2 decorated TiO2 nanotubes under solar light irradiation. ACS Sustainable Chemistry & Engineering, 6(3), 3754–3764. https://doi.org/10.1021/acssuschemeng.7b04118.

    Article  CAS  Google Scholar 

  25. Reddy, N. L., Rao, V. N., Vijayakumar, M., Santhosh, R., Anandan, S., Karthik, M., Shankar, M. V., Reddy, K. R., Shetti, N. P., Nadagouda, M. N., et al. (2019). A review on Frontiers in plasmonic nano-photocatalysts for hydrogen production. International Journal of Hydrogen Energy, 44(21), 10453–10472. https://doi.org/10.1016/j.ijhydene.2019.02.120.

    Article  CAS  Google Scholar 

  26. Kumar, D. P., Reddy, N. L., Karthik, M., Neppolian, B., Madhavan, J., & Shankar, M. V. V. (2016). Solar light sensitized P-Ag2O/n-TiO2 nanotubes heterojunction photocatalysts for enhanced hydrogen production in aqueous-glycerol solution. Solar Energy Materials & Solar Cells, 154, 78–87. https://doi.org/10.1016/j.solmat.2016.04.033.

    Article  CAS  Google Scholar 

  27. Praveen Kumar, D., Lakshmana Reddy, N., Karthikeyan, M., Chinnaiah, N., Bramhaiah, V., Durga Kumari, V., & Shankar, M. V. (2016). Synergistic effect of nanocavities in anatase TiO2 nanobelts for photocatalytic degradation of methyl orange dye in aqueous solution. Journal of Colloid and Interface Science, 477, 201–208. https://doi.org/10.1016/j.jcis.2016.05.014.

    Article  CAS  Google Scholar 

  28. Zhou, M., Wang, S., Yang, P., Luo, Z., Yuan, R., Asiri, A. M., Wakeel, M., & Wang, X. (2018). Layered heterostructures of ultrathin polymeric carbon nitride and ZnIn2S4 nanosheets for photocatalytic CO2 reduction. Chemistry - A European Journal, 24(69), 18529–18534. https://doi.org/10.1002/chem.201803250.

    Article  CAS  Google Scholar 

  29. Niu, P., Zhang, L., Liu, G., & Cheng, H.-M. (2012). Graphene-like carbon nitride nanosheets for improved photocatalytic activities. Advanced Functional Materials, 22(22), 4763–4770. https://doi.org/10.1002/adfm.201200922.

    Article  CAS  Google Scholar 

  30. Kale, S. B., Kalubarme, R. S., Mahadadalkar, M. A., Jadhav, H. S., Bhirud, A. P., Ambekar, J. D., Park, C.-J., & Kale, B. B. (2015). Hierarchical 3D ZnIn2S4/graphene nano-heterostructures: their in situ fabrication with dual functionality in solar hydrogen production and as anodes for lithium ion batteries. Physical Chemistry Chemical Physics, 17(47), 31850–31861. https://doi.org/10.1039/C5CP05546F.

    Article  CAS  Google Scholar 

  31. Ayekoe, P. Y., Robert, D., & Goné, D. L. (2016). Preparation of effective TiO2/Bi2O3 photocatalysts for water treatment. Environmental Chemistry Letters, 14(3), 387–393. https://doi.org/10.1007/s10311-016-0565-3.

    Article  CAS  Google Scholar 

  32. Cheng, L., Tian, Y., & Zhang, J. (2018). Construction of P-n heterojunction film of Cu2O/α-Fe2O3 for efficiently photoelectrocatalytic degradation of oxytetracycline. Journal of Colloid and Interface Science, 526, 470–479. https://doi.org/10.1016/j.jcis.2018.04.106.

    Article  CAS  Google Scholar 

  33. Fei, W., Li, H., Li, N., Chen, D., Xu, Q., Li, H., He, J., & Lu, J. (2020). Facile fabrication of ZnO/MoS2 p-n junctions on Ni foam for efficient degradation of organic pollutants through photoelectrocatalytic process. Solar Energy, 199, 164–172. https://doi.org/10.1016/j.solener.2020.02.037.

    Article  CAS  Google Scholar 

  34. Yang, L., Luo, S., Li, Y., Xiao, Y., Kang, Q., & Cai, Q. (2010). High efficient photocatalytic degradation of P-nitrophenol on a unique Cu2O/TiO2 p-n heterojunction network catalyst. Environmental Science & Technology, 44(19), 7641–7646. https://doi.org/10.1021/es101711k.

    Article  CAS  Google Scholar 

  35. Huang, H., Liu, C., Ou, H., Ma, T., & Zhang, Y. (2019). Self-sacrifice transformation for fabrication of Type-I and Type-II heterojunctions in hierarchical BixOyIz/g-C3N4 for efficient visible-light photocatalysis. Applied Surface Science, 470, 1101–1110. https://doi.org/10.1016/j.apsusc.2018.11.193.

    Article  CAS  Google Scholar 

  36. Bhoi, Y. P., & Mishra, B. G. (2018). Photocatalytic degradation of alachlor using Type-II CuS/BiFeO3 heterojunctions as novel photocatalyst under visible light irradiation. Chemical Engineering Journal, 344, 391–401. https://doi.org/10.1016/j.cej.2018.03.094.

    Article  CAS  Google Scholar 

  37. Shen, J., Shen, J., Zhang, W., Yu, X., Tang, H., Zhang, M., Zulfiqar, & Liu, Q. (2019). Built-in electric field induced CeO2/Ti3C2-MXene Schottky-junction for coupled photocatalytic tetracycline degradation and CO2 reduction. Ceramics International, 45(18, Part A), 24146–24153. https://doi.org/10.1016/j.ceramint.2019.08.123.

    Article  CAS  Google Scholar 

  38. Askari, N., Beheshti, M., Mowla, D., & Farhadian, M. (2020). Synthesis of CuWO4/Bi2S3 Z-Scheme heterojunction with enhanced cephalexin photodegradation. Journal of Photochemistry and Photobiology A: Chemistry, 394, 112463. https://doi.org/10.1016/j.jphotochem.2020.112463.

    Article  CAS  Google Scholar 

  39. Li, B., Lai, C., Zeng, G., Qin, L., Yi, H., Huang, D., Zhou, C., Liu, X., Cheng, M., Xu, P., et al. (2018). Facile hydrothermal synthesis of Z-Scheme Bi2Fe4O9/Bi2WO6 heterojunction photocatalyst with enhanced visible light photocatalytic activity. ACS Applied Materials & Interfaces, 10(22), 18824–18836. https://doi.org/10.1021/acsami.8b06128.

    Article  CAS  Google Scholar 

  40. Murugesan, P., Moses, J. A., & Anandharamakrishnan, C. (2019). Photocatalytic disinfection efficiency of 2D structure graphitic carbon nitride-based nanocomposites: a review. Journal of Materials Science, 54(19), 12206–12235. https://doi.org/10.1007/s10853-019-03695-2.

    Article  CAS  Google Scholar 

  41. Gusain, R., Gupta, K., Joshi, P., & Khatri, O. P. (2019). Adsorptive removal and photocatalytic degradation of organic pollutants using metal oxides and their composites: a comprehensive review. Advances in Colloid and Interface Science, 272, 102009. https://doi.org/10.1016/j.cis.2019.102009.

    Article  CAS  Google Scholar 

  42. Ma, Y., Wang, X. L., Jia, Y. S., Chen, X. B., Han, H. X., & Li, C. (2014). Titanium dioxide-based nanomaterials for photocatalytic fuel generations. Chemical Reviews, 114(19), 9987–10043.

    Article  CAS  Google Scholar 

  43. Devi, L. G., & Kavitha, R. (2013). A review on non metal ion doped titania for the photocatalytic degradation of organic pollutants under UV/solar light: role of photogenerated charge carrier dynamics in enhancing the activity. Applied Catalysis B: Environmental, 140–141, 559–587. https://doi.org/10.1016/j.apcatb.2013.04.035.

    Article  CAS  Google Scholar 

  44. Schneider, J., Matsuoka, M., Takeuchi, M., Zhang, J., Horiuchi, Y., Anpo, M., & Bahnemann, D. W. (2014). Understanding TiO2 photocatalysis: mechanisms and materials. Chemical Reviews, 114(19), 9919–9986. https://doi.org/10.1021/cr5001892.

    Article  CAS  Google Scholar 

  45. Zhao, J., Nan, J., Zhao, Z., Li, N., Liu, J., & Cui, F. (2017). Energy-efficient fabrication of a novel multivalence Mn3O4-MnO2 heterojunction for dye degradation under visible light irradiation. Applied Catalysis B: Environmental, 202, 509–517. https://doi.org/10.1016/j.apcatb.2016.09.065.

    Article  CAS  Google Scholar 

  46. Nevárez-Martínez, M. C., Kobylański, M. P., Mazierski, P., Wółkiewicz, J., Trykowski, G., Malankowska, A., Kozak, M., Espinoza-Montero, P. J., & Zaleska-Medynska, A. (2017). Self-organized TiO2-MnO2 nanotube arrays for efficient photocatalytic degradation of toluene. Molecules, 22(4). https://doi.org/10.3390/molecules22040564.

  47. Ganesh, I., Kumar, P. P., Annapoorna, I., Sumliner, J. M., Ramakrishna, M., Hebalkar, N. Y., Padmanabham, G., & Sundararajan, G. (2014). Preparation and characterization of Cu-Doped TiO2 materials for electrochemical, photoelectrochemical, and photocatalytic applications. Applied Surface Science, 293, 229–247. https://doi.org/10.1016/j.apsusc.2013.12.140.

    Article  CAS  Google Scholar 

  48. Lee, S. S., Bai, H., Liu, Z., & Sun, D. D. (2013). Novel-structured electrospun TiO2/CuO composite nanofibers for high efficient photocatalytic cogeneration of clean water and energy from dye wastewater. Water Research, 47(12), 4059–4073. https://doi.org/10.1016/j.watres.2012.12.044.

    Article  CAS  Google Scholar 

  49. Wang, X., Wu, H.-F., Kuang, Q., Huang, R.-B., Xie, Z.-X., & Zheng, L.-S. (2010). Shape-dependent antibacterial activities of Ag2O polyhedral particles. Langmuir, 26(4), 2774–2778. https://doi.org/10.1021/la9028172.

    Article  CAS  Google Scholar 

  50. Ren, H.-T., Jia, S.-Y., Wu, Y., Wu, S.-H., Zhang, T.-H., & Han, X. (2014). Improved photochemical reactivities of Ag2O/g-C3N4 in phenol degradation under UV and Visible light. Industrial and Engineering Chemistry Research, 53(45), 17645–17653. https://doi.org/10.1021/ie503312x.

    Article  CAS  Google Scholar 

  51. Lyu, L.-M., & Huang, M. H. (2011). Investigation of relative stability of different facets of Ag2O nanocrystals through face-selective etching. Journal of Physical Chemistry C, 115(36), 17768–17773. https://doi.org/10.1021/jp2059479.

    Article  CAS  Google Scholar 

  52. Sarkar, D., Ghosh, C. K., Mukherjee, S., & Chattopadhyay, K. K. (2013). Three dimensional Ag2O/TiO2 Type-II (p–n) nanoheterojunctions for superior photocatalytic activity. ACS Applied Materials & Interfaces, 5(2), 331–337. https://doi.org/10.1021/am302136y.

    Article  CAS  Google Scholar 

  53. Morales, M. V., Asedegbega-Nieto, E., Iglesias-Juez, A., Rodríguez-Ramos, I., & Guerrero-Ruiz, A. (2015). Role of exposed surfaces on zinc oxide nanostructures in the catalytic ethanol transformation. ChemSusChem, 8(13), 2223–2230. https://doi.org/10.1002/cssc.201500425.

    Article  CAS  Google Scholar 

  54. Wang, Y., Shi, R., Lin, J., & Zhu, Y. (2011). Enhancement of photocurrent and photocatalytic activity of ZnO hybridized with graphite-like C3N4. Energy & Environmental Science, 4(8), 2922–2929. https://doi.org/10.1039/C0EE00825G.

    Article  CAS  Google Scholar 

  55. Zha, R., Nadimicherla, R., & Guo, X. (2015). Ultraviolet photocatalytic degradation of methyl orange by nanostructured TiO2/ZnO heterojunctions. Journal of Materials Chemistry A, 3(12), 6565–6574. https://doi.org/10.1039/C5TA00764J.

    Article  CAS  Google Scholar 

  56. Zheng, X., Li, D., Li, X., Chen, J., Cao, C., Fang, J., Wang, J., He, Y., & Zheng, Y. (2015). Construction of ZnO/TiO2 photonic crystal heterostructures for enhanced photocatalytic properties. Applied Catalysis B: Environmental, 168–169, 408–415. https://doi.org/10.1016/j.apcatb.2015.01.001.

    Article  CAS  Google Scholar 

  57. Sun, W., Meng, S., Zhang, S., Zheng, X., Ye, X., Fu, X., & Chen, S. (2018). Insight into the transfer mechanisms of photogenerated carriers for heterojunction photocatalysts with the analogous positions of valence band and conduction band: a case study of ZnO/TiO2. Journal of Physical Chemistry C, 122(27), 15409–15420. https://doi.org/10.1021/acs.jpcc.8b03753.

    Article  CAS  Google Scholar 

  58. Deng, H., He, H., Sun, S., Zhu, X., Zhou, D., Han, F., Huang, B., & Pan, X. (2019). Photocatalytic degradation of dye by Ag/TiO2 nanoparticles prepared with different sol–gel crystallization in the presence of effluent organic matter. Environmental Science and Pollution Research, 26(35), 35900–35912. https://doi.org/10.1007/s11356-019-06728-0.

    Article  CAS  Google Scholar 

  59. Scuderi, V., Impellizzeri, G., Romano, L., Scuderi, M., Nicotra, G., Bergum, K., Irrera, A., Svensson, B. G., & Privitera, V. (2014). TiO2-Coated nanostructures for dye photo-degradation in water. Nanoscale Research Letters, 9(1), 458. https://doi.org/10.1186/1556-276X-9-458.

    Article  CAS  Google Scholar 

  60. Fei, J., & Li, J. (2015). Controlled preparation of porous TiO2–Ag nanostructures through supramolecular assembly for plasmon-enhanced photocatalysis. Advanced Materials, 27(2), 314–319. https://doi.org/10.1002/adma.201404007.

    Article  CAS  Google Scholar 

  61. Wen, Y., Liu, B., Zeng, W., & Wang, Y. (2013). Plasmonic photocatalysis properties of Au nanoparticles precipitated anatase/rutile mixed TiO2 nanotubes. Nanoscale, 5(20), 9739–9746. https://doi.org/10.1039/C3NR03024E.

    Article  CAS  Google Scholar 

  62. Zhang, Z., Baek, M., Song, H., & Yong, K. (2017). An unconventional outer-to-inner synthesis strategy for core (Au)-Shell nanostructures with photo-electrochemical enhancement. Nanoscale, 9(16), 5342–5351. https://doi.org/10.1039/C7NR00336F.

    Article  CAS  Google Scholar 

  63. Bian, Z., Tachikawa, T., Zhang, P., Fujitsuka, M., & Majima, T. A. (2014). TiO2 Superstructure-based plasmonic photocatalysts exhibiting efficient charge separation and unprecedented activity. Journal of the American Chemical Society, 136(1), 458–465. https://doi.org/10.1021/ja410994f.

    Article  CAS  Google Scholar 

  64. Yu, Y., Wen, W., Qian, X.-Y., Liu, J.-B., & Wu, J.-M. (2017). UV and Visible light photocatalytic activity of Au/TiO2 nanoforests with anatase/rutile phase junctions and controlled Au locations. Scientific Reports, 7(1), 41253. https://doi.org/10.1038/srep41253.

    Article  CAS  Google Scholar 

  65. Do, T. C. M. V., Nguyen, D. Q., Nguyen, K. T., & Le, P. H. (2019). TiO(2) and Au-TiO(2) Nanomaterials for rapid photocatalytic degradation of antibiotic residues in aquaculture wastewater. Mater (Basel, Switzerland), 12(15), 2434. https://doi.org/10.3390/ma12152434.

    Article  CAS  Google Scholar 

  66. Yang, Z., Lu, J., Ye, W., Yu, C., & Chang, Y. (2017). Preparation of Pt/TiO2 hollow nanofibers with highly visible light photocatalytic activity. Applied Surface Science, 392, 472–480. https://doi.org/10.1016/j.apsusc.2016.09.065.

    Article  CAS  Google Scholar 

  67. Cha, G., Schmuki, P., & Altomare, M. (2017). Anodic TiO2 nanotube membranes: site-selective Pt-activation and photocatalytic H2 evolution. Electrochimica Acta, 258, 302–310. https://doi.org/10.1016/j.electacta.2017.11.030.

    Article  CAS  Google Scholar 

  68. Fornari, A., Maria, D., de Araujo, M. B., Bergamin, D. C., Machado, G., Teixeira, S. R., & Weibel, D. E. (2016). Photocatalytic reforming of aqueous formaldehyde with hydrogen generation over TiO2 nanotubes loaded with Pt or Au nanoparticles. International Journal of Hydrogen Energy, 41(27), 11599–11607. https://doi.org/10.1016/j.ijhydene.2016.02.055.

    Article  CAS  Google Scholar 

  69. Slamet; Nasution, H. W., Purnama, E., Kosela, S., Gunlazuardi, J. Photocatalytic reduction of CO2 on Copper-Doped titania catalysts prepared by improved-impregnation method. Catalysis Communications 2005, 6 (5), 313–319. doi: https://doi.org/10.1016/j.catcom.2005.01.011.

  70. Rao, V. N., Reddy, N. L., Kumari, M. M., Cheralathan, K. K., Ravi, P., Sathish, M., Neppolian, B., Reddy, K. R., Shetti, N. P., Prathap, P., et al. (2019). Sustainable hydrogen production for the Greener environment by quantum dots-based efficient photocatalysts: a review. Journal of Environmental Management. Academic Press, October 15. https://doi.org/10.1016/j.jenvman.2019.07.017.

  71. Onsuratoom, S., Puangpetch, T., & Chavadej, S. (2011). Comparative investigation of hydrogen production over Ag-, Ni-, and Cu-loaded mesoporous-assembled TiO2-ZrO2 mixed oxide nanocrystal photocatalysts. Chemical Engineering Journal, 173(2), 667–675. https://doi.org/10.1016/j.cej.2011.08.016.

    Article  CAS  Google Scholar 

  72. Bessekhouad, Y., Robert, D., & Weber, J. V. (2005). Photocatalytic activity of Cu2O/TiO2, Bi2O3/TiO2 and ZnMn2O4/TiO2 heterojunctions. Catalysis Today, 101(3–4), 315–321. https://doi.org/10.1016/j.canod.2005.03.038.

    Article  CAS  Google Scholar 

  73. Sang, L., Zhang, S., Zhang, J., Yu, Z., Bai, G., & Du, C. (2019). TiO2 Nanotube arrays decorated with plasmonic Cu, CuO nanoparticles, and Eosin Y dye as efficient photoanode for water splitting. Materials Chemistry and Physics, 231, 27–32. https://doi.org/10.1016/j.matchemphys.2019.04.018.

    Article  CAS  Google Scholar 

  74. Liang, M., Lei, Q., Sun, S., & Zhu, Y. (2020). Plasmonic responses of Cu–Ag bimetallic system: influence of distinctiveness and arrangements. Optical Materials (Amst), 100, 109655. https://doi.org/10.1016/j.optmat.2020.109655.

    Article  CAS  Google Scholar 

  75. Lv, X.-J., Zhou, S.-X., Zhang, C., Chang, H.-X., Chen, Y., & Fu, W.-F. (2012). Synergetic effect of Cu and graphene as cocatalyst on TiO2 for enhanced photocatalytic hydrogen evolution from solar water splitting. Journal of Materials Chemistry, 22(35), 18542–18549. https://doi.org/10.1039/C2JM33325B.

    Article  CAS  Google Scholar 

  76. Meriam Suhaimy, S. H., Abd Hamid, S. B., Lai, C. W., Hasan, M. R., & Johan, M. R. (2016). TiO2 Nanotubes supported Cu nanoparticles for improving photocatalytic degradation of simazine under UV illumination. Catalysts, 6(11), 167. https://doi.org/10.3390/catal6110167.

    Article  CAS  Google Scholar 

  77. Kumar, S., Reddy, N. L., Kumar, A., Shankar, M. V., Krishnan, V., Kumar, S., Lakshmana, N., Reddy, A. K., & Muthukonda Venkatakrishnan Shankar, V. K. (2017). Two dimensional N-Doped ZnO-graphitic carbon nitride nanosheets heterojunctions with enhanced photocatalytic hydrogen evolution. International Journal of Hydrogen Energy, 43(8), 3988–4002. https://doi.org/10.1016/j.ijhydene.2017.09.113.

    Article  CAS  Google Scholar 

  78. Zeng, D., Xu, W., Ong, W.-J., Xu, J., Ren, H., Chen, Y., Zheng, H., & Peng, D.-L. (2018). Toward Noble-metal-free visible-light-driven photocatalytic hydrogen evolution: monodisperse sub–15 nm Ni2P nanoparticles anchored on porous g-C3N4 nanosheets to engineer 0D-2D heterojunction interfaces. Applied Catalysis B: Environmental, 221, 47–55. https://doi.org/10.1016/j.apcatb.2017.08.041.

    Article  CAS  Google Scholar 

  79. Abdelhafeez, I. A., Yao, Q., Wang, C., Su, Y., Zhou, X., & Zhang, Y. (2019). Green synthesis of ultrathin edge-activated foam-like carbon nitride nanosheets for enhanced photocatalytic performance under visible light irradiation. Sustain. Energy Fuels, 3(7), 1764–1775. https://doi.org/10.1039/C9SE00263D.

    Article  CAS  Google Scholar 

  80. Kumar Suneel, A., Reddy, N. L., Kushwaha, H. S., & Kumar. (2017). Efficient electron transfer across ZnO-MoS 2 -RGO heterojunction for remarkably enhanced sunlight driven photocatalytic hydrogen evolution. ChemSusChem, 10(18), 3588–3603. https://doi.org/10.1002/cssc.201701024.

    Article  CAS  Google Scholar 

  81. Luo, B., Liu, G., & Wang, L. (2016). Recent advances in 2D materials for photocatalysis. Nanoscale, 8(13), 6904–6920. https://doi.org/10.1039/C6NR00546B.

    Article  CAS  Google Scholar 

  82. Ong, W.-J., Tan, L.-L., Ng, Y. H., Yong, S.-T., & Chai, S.-P. (2016). Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: are we a step closer to achieving sustainability? Chemical Reviews, 116(12), 7159–7329. https://doi.org/10.1021/acs.chemrev.6b00075.

    Article  CAS  Google Scholar 

  83. Perreault, F., de Faria, A., & Elimelech, M. (2015). Environmental applications of graphene-based nanomaterials. Chemical Society Reviews, 44(16), 5861–5896. https://doi.org/10.1039/C5CS00021A.

    Article  CAS  Google Scholar 

  84. Li, F., Jiang, X., Zhao, J., & Zhang, S. (2015). Graphene oxide: a promising nanomaterial for energy and environmental applications. Nano Energy, 16, 488–515. https://doi.org/10.1016/j.nanoen.2015.07.014.

    Article  CAS  Google Scholar 

  85. Wen, J., Li, X., Li, H., Ma, S., He, K., Xu, Y., Fang, Y., Liu, W., & Gao, Q. (2015). Enhanced visible-light H2 evolution of g-C3N4 photocatalysts via the synergetic effect of amorphous NiS and cheap metal-free carbon black nanoparticles as co-catalysts. Applied Surface Science, 358, 204–212. https://doi.org/10.1016/j.apsusc.2015.08.244.

    Article  CAS  Google Scholar 

  86. Stan, M. S., Badea, M. A., Pircalabioru, G. G., Chifiriuc, M. C., Diamandescu, L., Dumitrescu, I., Trica, B., Lambert, C., & Dinischiotu, A. (2019). Designing cotton fibers impregnated with photocatalytic graphene oxide/Fe, N-Doped TiO2 particles as prospective industrial self-cleaning and biocompatible textiles. Materials Science and Engineering: C, 94, 318–332. https://doi.org/10.1016/j.msec.2018.09.046.

    Article  CAS  Google Scholar 

  87. Kumar, S., Reddy, N. L., Kushwaha, H. S., Kumar, A., Shankar, M. V., Bhattacharyya, K., Halder, A., & Krishnan, V. (2017). Efficient electron transfer across a ZnO–MoS2–reduced graphene oxide heterojunction for enhanced sunlight-driven photocatalytic hydrogen evolution. ChemSusChem, 10(18), 3588–3603. https://doi.org/10.1002/cssc.201701024.

    Article  CAS  Google Scholar 

  88. Cao, S.-W., Liu, X.-F., Yuan, Y.-P., Zhang, Z.-Y., Liao, Y.-S., Fang, J., Loo, S. C. J., Sum, T. C., & Xue, C. (2014). Solar-to-fuels conversion over In2O3/g-C3N4 hybrid photocatalysts. Applied Catalysis B: Environmental, 147, 940–946. https://doi.org/10.1016/j.apcatb.2013.10.029.

    Article  CAS  Google Scholar 

  89. Jiang, Z., Jiang, D., Yan, Z., Liu, D., Qian, K., & Xie, J. A. (2015). New visible light active multifunctional ternary composite based on TiO2–In2O3 nanocrystals heterojunction decorated porous graphitic carbon nitride for photocatalytic treatment of hazardous pollutant and H2 evolution. Applied Catalysis B: Environmental, 170–171, 195–205. https://doi.org/10.1016/j.apcatb.2015.01.041.

    Article  CAS  Google Scholar 

  90. Zang, Y., Li, L., Li, X., Lin, R., & Li, G. (2014). Synergistic collaboration of G-C3N4/SnO2 composites for enhanced visible-light photocatalytic activity. Chemical Engineering Journal, 246, 277–286. https://doi.org/10.1016/j.cej.2014.02.068.

    Article  CAS  Google Scholar 

  91. Tian, N., Huang, H., He, Y., Guo, Y., Zhang, T., & Zhang, Y. (2015). Mediator-free direct Z-scheme photocatalytic system: BiVO4/g-C3N4 organic–inorganic hybrid photocatalyst with highly efficient visible-light-induced photocatalytic activity. Dalton Transactions, 44(9), 4297–4307. https://doi.org/10.1039/C4DT03905J.

    Article  CAS  Google Scholar 

  92. Li, Y., Wang, J., Yang, Y., Zhang, Y., He, D., An, Q., & Cao, G. (2015). Seed-induced growing various TiO2 nanostructures on g-C3N4 nanosheets with much enhanced photocatalytic activity under visible light. Journal of Hazardous Materials, 292, 79–89. https://doi.org/10.1016/j.jhazmat.2015.03.006.

    Article  CAS  Google Scholar 

  93. Chen, Y.-C., Pu, Y.-C., & Hsu, Y.-J. (2012). Interfacial charge carrier dynamics of the three-component In2O3–TiO2–Pt heterojunction system. Journal of Physical Chemistry C, 116(4), 2967–2975. https://doi.org/10.1021/jp210033y.

    Article  CAS  Google Scholar 

  94. Wang, X., Maeda, K., Thomas, A., Takanabe, K., Xin, G., Carlsson, J. M., Domen, K., & Antonietti, M. A. (2009). Metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nature Materials, 8(1), 76–80. https://doi.org/10.1038/nmat2317.

    Article  CAS  Google Scholar 

  95. Kumar, R., Ansari, M. O., Barakat, M. A., & Rashid, J. (2019). Chapter 13: Graphene/metal oxide–based nanocomposite as photocatalyst for degradation of water pollutants. In M. Jawaid, A. Ahmad, & D. Lokhat (Eds.), Graphene-based nanotechnologies for energy and environmental applications, micro and nano technologies (pp. 221–240). Elsevier. https://doi.org/10.1016/B978-0-12-815811-1.00013-2.

    Chapter  Google Scholar 

  96. Rakkesh, R. A., Durgalakshmi, D., & Balakumar, S. (2018). Beyond chemical bonding interaction: an insight into the growth process of 1D ZnO on few-layer graphene for excellent photocatalytic and room temperature gas sensing applications. ChemistrySelect, 3(25), 7302–7309. https://doi.org/10.1002/slct.201800987.

    Article  CAS  Google Scholar 

  97. Ajay Rakkesh, R., Durgalakshmi, D., & Balakumar, S. (2015). Nanostructuring of a GNS-V2O5–TiO2 Core–Shell photocatalyst for water remediation applications under sun-light irradiation. RSC Advances, 5(24), 18633–18641. https://doi.org/10.1039/C5RA00180C.

    Article  CAS  Google Scholar 

  98. Li, B., & Cao, H. (2011). ZnO@graphene composite with enhanced performance for the removal of dye from water. Journal of Materials Chemistry, 21(10), 3346–3349. https://doi.org/10.1039/C0JM03253K.

    Article  CAS  Google Scholar 

  99. Wang, Y., Wang, W., Mao, H., Lu, Y., Lu, J., Huang, J., Ye, Z., & Lu, B. (2014). Electrostatic self-assembly of BiVO4–reduced graphene oxide nanocomposites for highly efficient visible light photocatalytic activities. ACS Applied Materials & Interfaces, 6(15), 12698–12706. https://doi.org/10.1021/am502700p.

    Article  CAS  Google Scholar 

  100. Ajay Rakkesh, R., Durgalakshmi, D., Karthe, P., & Balakumar, S. (2019). Role of interfacial charge transfer process in the graphene-ZnO-MoO3 Core-Shell nanoassemblies for efficient disinfection of industrial effluents. Processing and Application of Ceramics, 13(4), 376–386. https://doi.org/10.2298/PAC1904376A.

    Article  Google Scholar 

  101. Kumar, S., Sharma, R., Sharma, V., Harith, G., Sivakumar, V., & Krishnan, V. (2016). Role of RGO support and irradiation source on the photocatalytic activity of CdS–ZnO semiconductor nanostructures. Beilstein Journal of Nanotechnology, 7, 1684–1697. https://doi.org/10.3762/bjnano.7.161.

    Article  CAS  Google Scholar 

  102. Gurushantha, K., Anantharaju, K. S., Renuka, L., Sharma, S. C., Nagaswarupa, H. P., Prashantha, S. C., Vidya, Y. S., & Nagabhushana, H. (2017). New Green synthesized reduced graphene oxide–ZrO2 composite as high performance photocatalyst under sunlight. RSC Advances, 7(21), 12690–12703. https://doi.org/10.1039/C6RA25823A.

    Article  CAS  Google Scholar 

  103. Jiao, T., Zhao, H., Zhou, J., Zhang, Q., Luo, X., Hu, J., Peng, Q., & Yan, X. (2015). Self-Assembly reduced graphene oxide nanosheet hydrogel fabrication by anchorage of chitosan/silver and its potential efficient application toward dye degradation for wastewater treatments. ACS Sustainable Chemistry & Engineering, 3(12), 3130–3139. https://doi.org/10.1021/acssuschemeng.5b00695.

    Article  CAS  Google Scholar 

  104. An, S. J., Zhu, Y., Lee, S. H., Stoller, M. D., Emilsson, T., Park, S., Velamakanni, A., An, J., & Ruoff, R. S. (2010). Thin film fabrication and simultaneous anodic reduction of deposited graphene oxide platelets by electrophoretic deposition. Journal of Physical Chemistry Letters, 1(8), 1259–1263. https://doi.org/10.1021/jz100080c.

    Article  CAS  Google Scholar 

  105. Wang, H., Robinson, J. T., Li, X., & Dai, H. (2009). Solvothermal reduction of chemically exfoliated graphene sheets. Journal of the American Chemical Society, 131(29), 9910–9911. https://doi.org/10.1021/ja904251p.

    Article  CAS  Google Scholar 

  106. Mady, A. H., Baynosa, M. L., Tuma, D., & Shim, J.-J. (2017). Facile microwave-assisted Green synthesis of Ag-ZnFe2O4@rGO nanocomposites for efficient removal of organic dyes under UV- and Visible-light irradiation. Applied Catalysis B: Environmental, 203, 416–427. https://doi.org/10.1016/j.apcatb.2016.10.033.

    Article  CAS  Google Scholar 

  107. Gupta, A., Jamatia, R., Patil, R. A., Ma, Y.-R., & Pal, A. K. (2018). Copper Oxide/reduced graphene oxide nanocomposite-catalyzed synthesis of flavanones and flavanones with triazole hybrid molecules in one pot: a green and sustainable approach. ACS Omega, 3(7), 7288–7299. https://doi.org/10.1021/acsomega.8b00334.

    Article  CAS  Google Scholar 

  108. Sree, G. S., Botsa, S. M., Reddy, B. J. M., & Ranjitha, K. V. B. (2020). Enhanced UV–Visible triggered photocatalytic degradation of brilliant green by reduced graphene oxide based NiO and CuO ternary nanocomposite and their antimicrobial activity. Arabian Journal of Chemistry, 13(4), 5137–5150. https://doi.org/10.1016/j.arabjc.2020.02.012.

    Article  CAS  Google Scholar 

  109. Mandal, S. K., Dutta, K., Pal, S., Mandal, S., Naskar, A., Pal, P. K., Bhattacharya, T. S., Singha, A., Saikh, R., De, S., et al. (2019). Engineering of ZnO/RGO nanocomposite photocatalyst towards rapid degradation of toxic dyes. Materials Chemistry and Physics, 223, 456–465. https://doi.org/10.1016/j.matchemphys.2018.11.002.

    Article  CAS  Google Scholar 

  110. Lakshmana Reddy, N., Navakoteswara Rao, V., Mamatha Kumari, M., Kakarla, R. R. R. R., Ravi, P., Sathish, M., Karthik, M., Venkatakrishnan, M., & Inamuddin, S. (2018). Nanostructured semiconducting materials for efficient hydrogen generation. Environmental Chemistry Letters, 16(3), 765–796. https://doi.org/10.1007/s10311-018-0722-y.

    Article  CAS  Google Scholar 

  111. Jose, D., Sorensen, C. M., Rayalu, S. S., Shrestha, K. M., & Klabunde, K. J. (2013). Au-TiO2 Nanocomposites and efficient photocatalytic hydrogen production under UV–Visible and visible light illuminations: a comparison of different crystalline forms of TiO2. International Journal of Photoenergy, 685614(10). https://doi.org/10.1155/2013/685614.

  112. Phivilay, S. P., Puretzky, A. A., Domen, K., & Wachs, I. E. (2013). Nature of catalytic active sites present on the surface of advanced bulk tantalum mixed oxide photocatalysts. ACS Catalysis, 3(12), 2920–2929. https://doi.org/10.1021/cs400662m.

    Article  CAS  Google Scholar 

  113. Zhang, H., Wei, J., Dong, J., Liu, G., Shi, L., An, P., Zhao, G., Kong, J., Wang, X., Meng, X., et al. (2016). Efficient visible-light-driven carbon dioxide reduction by a single-atom implanted metal–organic framework. Angewandte Chemie International Edition, 55(46), 14310–14314. https://doi.org/10.1002/anie.201608597.

    Article  CAS  Google Scholar 

  114. Khan, I., Saeed, K., & Khan, I. (2019). Nanoparticles properties, applications and toxicities. Arabian Journal of Chemistry, 12(7), 908–931. https://doi.org/10.1016/j.arabjc.2017.05.011.

    Article  CAS  Google Scholar 

  115. Faisal, M., Jalalah, M., Harraz, F. A., El-Toni, A. M., Khan, A., & Al-Assiri, M. S. (2020). Au nanoparticles-doped g-C3N4 nanocomposites for enhanced photocatalytic performance under visible light illumination. Ceramics International. https://doi.org/10.1016/j.ceramint.2020.05.250.

  116. Wang, H., Wang, G., Zhang, Y., Ma, Y., Wu, Z., Gao, D., Yang, R., Wang, B., Qi, X., & Yang, J. (2019). Preparation of RGO/TiO2/Ag aerogel and its photodegradation performance in gas phase formaldehyde. Scientific Reports, 9(1), 16314. https://doi.org/10.1038/s41598-019-52541-7.

    Article  Google Scholar 

  117. Huang, L., Yang, H., Zhang, Y., & Xiao, W. (2016). Study on synthesis and antibacterial properties of Ag NPs/GO nanocomposites. Journal of Nanomaterials, 2016, 5685967. https://doi.org/10.1155/2016/5685967.

    Article  CAS  Google Scholar 

  118. Li, L., Chen, M., Huang, G., Yang, N., Zhang, L., Wang, H., Liu, Y., Wang, W., & Gao, J. (2014). A Green method to prepare Pd–Ag nanoparticles supported on reduced graphene oxide and their electrochemical catalysis of methanol and ethanol oxidation. Journal of Power Sources, 263, 13–21. https://doi.org/10.1016/j.jpowsour.2014.04.021.

    Article  CAS  Google Scholar 

  119. Shi, L., Li, Z., Marcus, K., Wang, G., Liang, K., Niu, W., & Yang, Y. (2018). Integration of Au nanoparticles with a G-C3N4 based heterostructure: switching charge transfer from Type-II to Z-scheme for enhanced visible light photocatalysis. Chemical Communications, 54(30), 3747–3750. https://doi.org/10.1039/C8CC01370E.

    Article  CAS  Google Scholar 

  120. Kasturi, S., Torati, S. R., Eom, Y. J., Ahmad, S., Lee, B.-J., Yu, J.-S., & Kim, C. (2020). Real-time monitored photocatalytic activity and electrochemical performance of an RGO/Pt nanocomposite synthesized via a Green approach. RSC Advances, 10(23), 13722–13731. https://doi.org/10.1039/D0RA00541J.

    Article  CAS  Google Scholar 

  121. Liu, C.-C., Xu, H., Wang, L., & Qin, X. (2017). Facile one-pot green synthesis and antibacterial activities of GO/Ag nanocomposites. Acta Metallurgica Sinica (English Letters), 30(1), 36–44. https://doi.org/10.1007/s40195-016-0517-8.

    Article  CAS  Google Scholar 

  122. Liu, Y., Tian, C., Yan, B., Lu, Q., Xie, Y., Chen, J., Gupta, R., Xu, Z., Kuznicki, S. M., Liu, Q., et al. (2015). Nanocomposites of graphene oxide{,} Ag nanoparticles{,} and magnetic ferrite nanoparticles for elemental mercury (Hg0) removal. RSC Advances, 5(20), 15634–15640. https://doi.org/10.1039/C4RA16016A.

    Article  CAS  Google Scholar 

  123. Rajesh, R., Kumar, S. S., & Venkatesan, R. (2014). Efficient degradation of azo dyes using Ag and Au nanoparticles stabilized on graphene oxide functionalized with PAMAM dendrimers. New Journal of Chemistry, 38(4), 1551–1558. https://doi.org/10.1039/C3NJ01050C.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors acknowledge the National Research Foundation of Korea Grant funded by the Korean Government (NRF-2019R1l1A3A01041454).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Shankar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nagappagari, L.R., Lee, K., Rakesh, A., Balakumar, S., V. Shankar, M. (2021). Nanostructured Heterojunction (1D-0D and 2D-0D) Photocatalysts for Environmental Remediation. In: Balakumar, S., Keller, V., Shankar, M. (eds) Nanostructured Materials for Environmental Applications. Springer, Cham. https://doi.org/10.1007/978-3-030-72076-6_2

Download citation

Publish with us

Policies and ethics