Skip to main content

Black TiO2: An Emerging Photocatalyst and Its Applications

  • Chapter
  • First Online:
Nanostructured Materials for Environmental Applications

Abstract

TiO2-based photocatalysis is one of the excellent prospects in the field of energy and environmental research. It has wide range of applications in the pollutant removal as well as the water splitting. However, the efficiency is still short of the large-scale applications due to the limiting factors such as low visible sensitivity as well as high recombination. Several modifications such as doping, sensitization, and noble metal modification are employed to address the drawbacks of TiO2. In the process of addressing these demerits, the black titania has attracted huge attraction in the recent years due to its ability to have higher light absorption, decreased recombination. In this chapter, we explain various physical, chemical, and electrochemical procedures to synthesis the black TiO2. The important features of black titania, namely, the structural disorders, oxygen vacancies, as well as the band modifications, are discussed in detail. Accordingly, the application of black TiO2 as a photocatalyst in environmental remediation and clean energy generation are summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Park, K., Zhang, Q., Myers, D., & Cao, G. (2013). Charge transport properties in TiO2 network with different particle sizes for dye sensitized solar cells. ACS Applied Materials & Interfaces, 5(3), 1044–1052.

    Article  CAS  Google Scholar 

  2. Wu, S., Weng, Z., Liu, X., Yeung, K. W. K., & Chu, P. (2014). Functionalized TiO2 based nanomaterials for biomedical applications. Advanced Functional Materials, 24(35), 5464–5481.

    Article  CAS  Google Scholar 

  3. Reddy, P. A. K., Reddy, P. V. L., Kim, K. H., Kumar, M. K., Manvitha, C., & Shim, J. J. (2017). Novel approach for the synthesis of nitrogen-doped titania with variable phase composition and enhanced production of hydrogen under solar irradiation. Journal of Industrial and Engineering Chemistry, 53(25), 253–260.

    Article  CAS  Google Scholar 

  4. Reddy, J. K., Lalitha, K., Reddy, P. V. L., Sadanandam, G., Subrahmanyam, M., & Kumari, V. D. (2014). Fe/TiO2: A visible light active photocatalyst for the continuous production of hydrogen from water splitting under solar irradiation. Catalysis Letters, 144(2), 340–346.

    Article  CAS  Google Scholar 

  5. Banerjee, B., Amoli, V., Maurya, A., Sinha, A. K., & Bhaumik, A. (2015). Green synthesis of Pt-doped TiO2 nanocrystals with exposed (001) facets and mesoscopic void space for photo-splitting of water under solar irradiation. Nanoscale, 7(23), 10504–10512.

    Article  CAS  Google Scholar 

  6. Reddy, P. V. L., Kavitha, B., Reddy, P. A. K., & Kim, K. H. (2017). TiO2-based photocatalytic disinfection of microbes in aqueous media: A review. Environmental Research, 154, 296–303.

    Article  Google Scholar 

  7. Reddy, P. V. L., Kim, K. H., & Kim, Y. H. (2011). A review of photocatalytic treatment for various air pollutants. Asian Journal of Atmospheric Environment, 5(3), 181–188.

    Article  CAS  Google Scholar 

  8. Reddy, P. A. K., Reddy, P. V. L., Kwon, E., Kim, K. H., Akter, T., & Kalagara, S. (2016). Recent advances in photocatalytic treatment of pollutants in aqueous media. Environment International, 91, 94–103.

    Article  CAS  Google Scholar 

  9. Ozawa, K., Emori, M., Yamamoto, S., Yukawa, R., Yamamoto, S., Hobara, R., Fujikawa, K., Sakama, H., & Matsuda, I. (2014). Electron–hole recombination time at TiO2 single-crystal surfaces: Influence of surface band bending. Journal of Physical Chemistry Letters, 5(11), 1953–1957.

    Article  CAS  Google Scholar 

  10. Nolan, M., Iwaszuk, A., Lucid, A. K., Carey, J. J., & Fronzi, M. (2016). Design of novel visible light active photocatalyst materials: Surface modified TiO2. Advanced Materials, 28(27), 5425–5446.

    Article  CAS  Google Scholar 

  11. Chand, R., Obuchi, E., Katoh, K., Luitel, H. N., & Nakano, K. (2013). Effect of transition metal doping under reducing calcination atmosphere on photocatalytic property of TiO2 immobilized on SiO2 beads. Journal of Environmental Sciences, 25(7), 1419–1423.

    Article  CAS  Google Scholar 

  12. Roy, N., Sohn, Y., Leung, K. T., & Pradhan, D. (2014). Engineered electronic states of transition metal doped TiO2 nanocrystals for low overpotential oxygen evolution reaction. Journal of Physical Chemistry C, 118(51), 29499–29506.

    Article  CAS  Google Scholar 

  13. Reddy, P. A. K., Reddy, P. V. L., Sharma, V. M., Srinivas, B., Kumari, V. D., & Subrahmanyam, M. (2010). Photocatalytic degradation of isoproturon pesticide on C, N and S doped TiO2. Journal of Water Resource and Protection, 2, 235–244.

    Article  CAS  Google Scholar 

  14. Vaiano, V., Sacco, O., Sannino, D., Ciambelli, P., Longo, S., Venditto, V., & Guerra, G. (2014). N-doped TiO2/s-PS aerogels for photocatalytic degradation of organic dyes in wastewater under visible light irradiation. Journal of Chemical Technology and Biotechnology, 89(8), 1175–1181.

    Article  CAS  Google Scholar 

  15. D’Souza, L. P., Shwetharani, R., Amoli, V., Fernando, C. A. N., Sinha, A. K., & Balakrishna, R. G. (2016). Photoexcitation of neodymium doped TiO2 for improved performance in dye-sensitized solar cells. Materials and Design, 104, 346–354.

    Article  Google Scholar 

  16. Lu, N., Yeh, Y. P., Wang, G. B., Feng, T. Y., Shih, Y. H., & Chen, D. (2017). Dye-sensitized TiO2-catalyzed photodegradation of sulfamethoxazole under blue or yellow light. Environmental Science and Pollution Research International, 24(1), 489–499.

    Article  CAS  Google Scholar 

  17. Lepcha, A., Maccato, C., Mettenbörger, A., Andreu, T., Mayrhofer, L., Walter, M., Olthof, S., Ruoko, T.-P., Klein, A., Moseler, M., Meerholz, K., Morante, J. R., Barreca, D., & Mathur, S. (2015). Electrospun black titania nanofibers: Influence of hydrogen plasma-induced disorder on the electronic structure and photoelectrochemical performance. Journal of Physical Chemistry C, 119(33), 18835–18842.

    Article  CAS  Google Scholar 

  18. Ullattil, S. G., Narendranath, S. B., Pillai, S. C., & Periyat, P. (2018). Black TiO2 nanomaterials: A review of recent advances. Chemical Engineering Journal, 343, 708–736.

    Article  CAS  Google Scholar 

  19. Chen, X., Liu, L., & Huang, F. (2015). Black titanium dioxide (TiO2) nanomaterials. Chemical Society Reviews, 44, 1861–1885.

    Article  CAS  Google Scholar 

  20. Yan, X., Li, Y., & Xia, T. (2017). Black titanium dioxide nanomaterials in photocatalysis. International Journal of Photoenergy, 8529851, 1–16.

    Article  Google Scholar 

  21. Qiu, J., Li, S., Gray, E., Liu, H., Gu, Q.-F., Sun, C., Lai, C., Zhao, H., & Zhang, S. (2014). Hydrogenation synthesis of blue TiO2 for high-performance lithium-ion batteries. Journal of Physical Chemistry C, 118(17), 8824–8830.

    Article  CAS  Google Scholar 

  22. Liu, N., Schneider, C., Freitag, D., Hartmann, M., Venkatesan, U., Muller, J., Spiecker, E., & Schmuki, P. (2014). Black TiO2 nanotubes: Cocatalyst-free open-circuit hydrogen generation. Nano Letters, 14(6), 3309–3313.

    Article  CAS  Google Scholar 

  23. Chen, X., Liu, L., Yu, P. Y., & Mao, S. S. (2011). Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science, 331(6018), 746–750.

    Article  CAS  Google Scholar 

  24. Lu, H., Zhao, B., Pan, R., Yao, J., Qiu, J., Luo, L., & Liu, Y. (2014). Safe and facile hydrogenation of commercial Degussa P25 at room temperature with enhanced photocatalytic activity. RSC Advances, 4, 1128–1132.

    Article  CAS  Google Scholar 

  25. Liu, Y., Feng, H., Yan, X., Wang, J., Yang, H., Du, Y., & Hao, W. (2017). The origin of enhanced photocatalytic activities of hydrogenated TiO2 nanoparticles. Dalton Transactions, 46, 10694–10699.

    Article  CAS  Google Scholar 

  26. Liu, H., Ma, H. T., Li, X. Z., Li, W. Z., Wu, M., & Bao, X. H. (2003). The enhancement of TiO2 photocatalytic activity by hydrogen thermal treatment. Chemosphere, 50(1), 39–46.

    Article  CAS  Google Scholar 

  27. Yu, X., Kim, B., & Kim, Y. K. (2013). Highly enhanced photoactivity of anatase TiO2 nanocrystals by controlled hydrogenation-induced surface defects. ACS Catalysis, 3(11), 2479–2486.

    Article  CAS  Google Scholar 

  28. Wang, G., Wang, H., Ling, Y., Tang, Y., Yang, X., Fitzmorris, R. C., Wang, C., Zhang, J. Z., & Li, Y. (2011). Hydrogen-treated TiO2 nanowire arrays for photoelectrochemical water splitting. Nano Letters, 11(7), 3026–3033.

    Article  CAS  Google Scholar 

  29. Naldoni, A., Allieta, M., Santangelo, S., Marelli, M., Fabbri, F., Cappelli, S., Bianchi, C. L., Psaro, R., & Santo, V. D. (2012). Effect of nature and location of defects on bandgap narrowing in black TiO2 nanoparticles. Journal of the American Chemical Society, 134(18), 7600–7603.

    Article  CAS  Google Scholar 

  30. Shin, J.-Y., Joo, J. H., Samuelis, D., & Maier, J. (2012). Oxygen-deficient TiO2−δ nanoparticles via hydrogen reduction for high rate capability lithium batteries. Chemistry of Materials, 24(3), 543–551.

    Article  CAS  Google Scholar 

  31. Danon, A., Bhattacharyya, K., Vijayan, B. K., Lu, J., Sauter, D. J., Gray, K. A., Stair, P. C., & Weitz, E. (2012). Effect of reactor materials on the properties of titanium oxide nanotubes. ACS Catalysis, 2(1), 45–49.

    Article  CAS  Google Scholar 

  32. Zhang, S., Zhang, S., Peng, B., Wang, H., Yu, H., Wang, H., & Peng, F. (2014). High performance hydrogenated TiO2 nanorod arrays as a photoelectrochemical sensor for organic compounds under visible light. Electrochemistry Communications, 40, 24–27.

    Article  Google Scholar 

  33. Zhu, W.-D., Wang, C.-W., Chen, J.-B., Li, D.-S., Zhou, F., & Zhang, H.-L. (2012). Enhanced field emission from hydrogenated TiO2 nanotube arrays. Nanotechnology, 23, 455204.

    Article  Google Scholar 

  34. He, H., Yang, K., Wang, N., Luo, F., & Chen, H. (2013). Hydrogenated TiO2 film for enhancing photovoltaic properties of solar cells and self-sensitized effect. Journal of Applied Physics, 114, 213505.

    Article  Google Scholar 

  35. Wang, D., Zhang, X., Sun, P., Lu, S., Wang, L., Wang, C., & Liu, Y. (2014). Photoelectrochemical water splitting with rutile TiO2 nanowires array: Synergistic effect of hydrogen treatment and surface modification with anatase nanoparticles. Electrochimica Acta, 130, 290–295.

    Article  CAS  Google Scholar 

  36. Zhu, Y., Liu, D., & Meng, M. (2014). H2 spillover enhanced hydrogenation capability of TiO2 used for photocatalytic splitting of water: A traditional phenomenon for new applications. Chemical Communications, 50, 6049–6051.

    Article  CAS  Google Scholar 

  37. Zhang, H., Xing, Z., Zhang, Y., Li, Z., Wu, X., Liu, C., Zhu, Q., & Zhou, W. (2015). Ni2+ and Ti3+ co-doped porous black anatase TiO2 with unprecedented-high visible-light-driven photocatalytic degradation performance. RSC Advances, 5, 107150–107157.

    Article  CAS  Google Scholar 

  38. Grabstanowicz, L. R., Gao, S., Li, T., Rickard, R. M., Rajh, T., Liu, D. J., & Xu, T. (2013). Facile oxidative conversion of TiH2 to high-concentration Ti3+-self-doped rutile TiO2 with visible-light photoactivity. Inorganic Chemistry, 52(7), 3884–3890.

    Article  CAS  Google Scholar 

  39. Myung, S. T., Kikuchi, M., Yoon, C. S., Yashiro, H., Kim, S. J., Sun, Y. K., & Scrosati, B. (2013). Black anatase titania enabling ultra high cycling rates for rechargeable lithium batteries. Energy & Environmental Science, 6, 2609–2614.

    Article  CAS  Google Scholar 

  40. Li, L., Chen, Y., Jiao, S., Fang, Z., Liu, X., Xu, Y., Pang, G., & Feng, S. (2016). Synthesis, microstructure, and properties of black anatase and B phase TiO2 nanoparticles. Materials and Design, 100, 235–240.

    Article  CAS  Google Scholar 

  41. Wei, S., Wu, R., Xu, X., Jian, J., Wang, H., & Sun, Y. (2016). One-step synthetic approach for core-shelled black anatase titania with high visible light photocatalytic performance. Chemical Engineering Journal, 299, 120–125.

    Article  CAS  Google Scholar 

  42. Leshuk, T., Parviz, R., Everett, P., Krishnakumar, H., Varin, R. A., & Gu, F. (2013). Photocatalytic activity of hydrogenated TiO2. ACS Applied Materials & Interfaces, 5(6), 1892–1895.

    Article  CAS  Google Scholar 

  43. Wang, Z., Yang, C., Lin, T., Yin, H., Chen, P., Wan, D., Xu, F., Huang, F., Lin, J., Xie, X., & Jiang, M. (2013). H-doped black titania with very high solar absorption and excellent photocatalysis enhanced by localized surface plasmon resonance. Advanced Functional Materials, 23, 5444–5450.

    Article  CAS  Google Scholar 

  44. Teng, F., Li, M., Gao, C., Zhang, G., Zhang, P., Wang, Y., Chen, L., & Xie, E. (2014). Preparation of black TiO2 by hydrogen plasma assisted chemical vapor deposition and its photocatalytic activity. Applied Catalysis B: Environmental, 148–149, 339–343.

    Article  Google Scholar 

  45. Yan, Y., Hao, B., Wang, D., Chen, G., Markweg, E., Albrecht, A., & Schaaf, P. (2013). Understanding the fast lithium storage performance of hydrogenated TiO2 nanoparticles. Journal of Materials Chemistry A, 1, 14507–14513.

    Article  CAS  Google Scholar 

  46. Panomsuwan, G., Watthanaphanit, A., Ishizaki, T., & Saito, N. (2015). Water-plasma-assisted synthesis of black titania spheres with efficient visible-light photocatalytic activity. Physical Chemistry Chemical Physics, 17, 13794–13799.

    Article  CAS  Google Scholar 

  47. Wang, Z., Yang, C., Lin, T., Yin, H., Chen, P., Wan, D., Xu, F., Huang, F., Lin, J., Xie, X., & Jiang, M. (2013). Visible-light photocatalytic, solar thermal and photoelectrochemical properties of aluminium-reduced black titania. Energy & Environmental Science, 6, 3007–3014.

    Article  CAS  Google Scholar 

  48. Cui, H., Zhao, W., Yang, C., Yin, H., Lin, T., Shan, Y., & Huang, F. (2014). Black TiO2 nanotube arrays for high-efficiency photoelectrochemical water-splitting. Journal of Materials Chemistry A, 2, 8612–8616.

    Article  CAS  Google Scholar 

  49. Lin, T., Yang, C., Wang, Z., Yin, H., Lü, X., Huang, F., & Jiang, M. (2014). Effective nonmetal incorporation in black titania with enhanced solar energy utilization. Energy & Environmental Science, 7, 967–972.

    Article  CAS  Google Scholar 

  50. Zhao, Z., Tan, H., Zhao, H., Lv, Y., Zhou, L.-J., Song, Y., & Sun, Z. (2014). Reduced TiO2 rutile nanorods with well-defined facets and their visible-light photocatalytic activity. Chemical Communications, 50, 2755–2757.

    Article  CAS  Google Scholar 

  51. Sinhamahapatra, A., Jeon, J. P., & Yu, J. S. (2015). A new approach to prepare highly active and stable black titania for visible light-assisted hydrogen production. Energy & Environmental Science, 8, 3539–3544.

    Article  CAS  Google Scholar 

  52. Zhang, K., Wang, L., Kim, J. K., Ma, M., Veerappan, G., Lee, C.-L., Kong, K.-J., Lee, H., & Park, J. H. (2016). An order/disorder/water junction system for highly efficient co-catalyst-free photocatalytic hydrogen generation. Energy & Environmental Science, 9, 499–503.

    Article  CAS  Google Scholar 

  53. Kang, Q., Cao, J., Zhang, Y., Liu, L., Xu, H., & Ye, J. (2013). Reduced TiO2 nanotube arrays for photoelectrochemical water splitting. Journal of Materials Chemistry A, 1, 5766–5774.

    Article  CAS  Google Scholar 

  54. Tan, H., Zhao, Z., Niu, M., Mao, C., Cao, D., Cheng, D., Feng, P., & Sun, Z. (2014). A facile and versatile method for preparation of colored TiO2 with enhanced solar-driven photocatalytic activity. Nanoscale, 6, 10216–10223.

    Article  CAS  Google Scholar 

  55. Tominaka, S., Tsujimoto, Y., Matsushita, Y., & Yamaura, K. (2011). Synthesis of nanostructured reduced titanium oxide: Crystal structure transformation maintaining nanomorphology. Angewandte Chemie International Edition, 50, 7418–7421.

    Article  CAS  Google Scholar 

  56. Zhu, G., Yin, H., Yang, C., Cui, H., Wang, Z., Xu, J., Lin, T., & Huang, F. (2015). Black titania for superior photocatalytic hydrogen production and photoelectrochemical water splitting. ChemCatChem, 7, 2614–2619.

    Article  CAS  Google Scholar 

  57. Zhang, Z., Hedhili, M. N., Zhu, H., & Wang, P. (2013). Electrochemical reduction induced self-doping of Ti3+ for efficient water splitting performance on TiO2 based photoelectrodes. Physical Chemistry Chemical Physics, 15, 15637–15644.

    Article  CAS  Google Scholar 

  58. Zheng, L., Cheng, H., Liang, F., Shu, S., Tsang, C. K., Li, H., & Li, Y. Y. (2012). Porous TiO2 photonic band gap materials by anodization. Journal of Physical Chemistry C, 116(9), 5509–5515.

    Article  CAS  Google Scholar 

  59. Dong, J., Han, J., Liu, Y., Nakajima, A., Matsushita, S., Wei, S., & Gao, W. (2014). Defective black TiO2 synthesized via anodization for visible-light photocatalysis. ACS Applied Materials & Interfaces, 6(3), 1385–1388.

    Article  CAS  Google Scholar 

  60. Chen, X., Zhao, D., Liu, K., Wang, C., Liu, L., Li, B., & Shen, D. (2015). Laser-modified black titanium oxide nanospheres and their photocatalytic activities under visible light. ACS Applied Materials & Interfaces, 7, 16070–16077.

    Article  CAS  Google Scholar 

  61. Nakajima, T., Nakamura, T., Shinoda, K., & Tsuchiya, T. (2014). Rapid formation of black titania photoanodes: Pulsed laser-induced oxygen release and enhanced solar water splitting efficiency. Journal of Materials Chemistry A, 2, 6762–6771.

    Article  CAS  Google Scholar 

  62. Lü, X., Chen, A., Luo, Y., Lu, P., Dai, Y., Enriquez, E., Dowden, P., Xu, H., Kotula, P. G., Azad, A. K., Yarotski, D. A., Prasankumar, R. P., Taylor, A. J., Thompson, J. D., & Jia, Q. (2016). Conducting interface in oxide homojunction: Understanding of superior properties in black TiO2. Nano Letters, 16(9), 5751–5755.

    Article  Google Scholar 

  63. Li, G., Lian, Z., Li, X., Xu, Y., Wang, W., Zhang, D., Tian, F., & Li, H. (2015). Ionothermal synthesis of black Ti3+-doped single-crystal TiO2 as an active photocatalyst for pollutant degradation and H2 generation. Journal of Materials Chemistry A, 3, 3748–3756.

    Article  CAS  Google Scholar 

  64. Zou, X., Liu, J., Su, J., Zuo, F., Chen, J., & Feng, P. (2013). Facile synthesis of thermal- and photostable titania with paramagnetic oxygen vacancies for visible-light photocatalysis. Chemistry—A European Journal, 19, 2866–2873.

    Article  CAS  Google Scholar 

  65. Liu, N., Häublein, V., Zhou, X., Venkatesan, U., Hartmann, M., Mačković, M., Nakajima, T., Spiecker, E., Osvet, A., Frey, L., & Schmuki, P. (2015). “Black” TiO2 nanotubes formed by high-energy proton implantation show noblemetal-co-catalyst free photocatalytic H2−evolution. Nano Letters, 15(10), 6815–6820.

    Article  CAS  Google Scholar 

  66. Huang, H., Zhang, H., Ma, Z., Liu, Y., Zhang, X., Han, Y., & Kang, Z. (2013). Si quantum dot-assisted synthesis of mesoporous black TiO2 nanocrystals with high photocatalytic activity. Journal of Materials Chemistry A, 1, 4162–4166.

    Article  CAS  Google Scholar 

  67. Xia, T., & Chen, X. (2013). Revealing the structural properties of hydrogenated black TiO2 nanocrystals. Journal of Materials Chemistry A, 1, 2983–2989.

    Article  CAS  Google Scholar 

  68. Wang, W., Ni, Y., Lu, C., & Xu, Z. (2012). Hydrogenation of TiO2 nanosheets with exposed {001} facets for enhanced photocatalytic activity. RSC Advances, 2, 8286–8288.

    Article  CAS  Google Scholar 

  69. Jiang, X., Zhang, Y., Jiang, J., Rong, Y., Wang, Y., Wu, Y., & Pan, C. (2012). Characterization of oxygen vacancy associates within hydrogenated TiO2: A positron annihilation study. Journal of Physical Chemistry C, 116(42), 22619–22624.

    Article  CAS  Google Scholar 

  70. Lu, Z., Yip, C.-T., Wang, L., Huang, H., & Zhou, L. (2012). Hydrogenated TiO2 nanotube arrays as high-rate anodes for lithium-ion microbatteries. ChemPlusChem, 77, 991–1000.

    Article  CAS  Google Scholar 

  71. Zeng, L., Song, W., Li, M., Zeng, D., & Xie, C. (2014). Catalytic oxidation of formaldehyde on surface of H-TiO2/H-C-TiO2 without light illumination at room temperature. Applied Catalysis. B, Environmental, 147, 490–498.

    Article  CAS  Google Scholar 

  72. Chen, X., Liu, L., Liu, Z., Marcus, M. A., Wang, W.-C., Oyler, N. A., Grass, M. E., Mao, B., Glans, P.-A., Yu, P. Y., Guo, J., & Mao, S. S. (2013). Properties of disorder engineered black titanium dioxide nanoparticles through hydrogenation. Scientific Reports, 3, 1510.

    Article  Google Scholar 

  73. Xia, T., Zhang, C., Oyler, N. A., & Chen, X. (2013). Hydrogenated TiO2 nanocrystals: A novel microwave absorbing material. Advanced Materials, 25, 6905–6910.

    Article  CAS  Google Scholar 

  74. Zhang, C., Yu, H., Li, Y., Gao, Y., Zhao, Y., Song, W., Shao, Z., & Yi, B. (2013). Supported Noble metals on hydrogen-treated TiO2 nanotube arrays as highly ordered electrodes for fuel cells. ChemSusChem, 6, 659–666.

    Article  CAS  Google Scholar 

  75. Xia, T., Zhang, C., Oyler, N. A., & Chen, X. (2014). Enhancing microwave absorption of TiO2 nanocrystals via hydrogenation. Journal of Materials Research, 29, 2198–2210.

    Article  CAS  Google Scholar 

  76. Lu, X., Wang, G., Zhai, T., Yu, M., Gan, J., Tong, Y., & Li, Y. (2012). Hydrogenated TiO2 nanotube arrays for supercapacitors. Nano Letters, 12(3), 1690–1696.

    Article  CAS  Google Scholar 

  77. Yin, H., Lin, T., Yang, C., Wang, Z., Zhu, G., Xu, T., Xie, X., Huang, F., & Jiang, M. (2013). Gray TiO2 nanowires synthesized by aluminum-mediated reduction and their excellent photocatalytic activity for water cleaning. Chemistry—A European Journal, 19, 13313–13316.

    Article  CAS  Google Scholar 

  78. Rekoske, J. E., & Barteau, M. A. (1997). Isothermal reduction kinetics of titanium dioxide-based materials. The Journal of Physical Chemistry. B, 101(7), 1113–1124.

    Article  CAS  Google Scholar 

  79. Li, S., Qiu, J., Ling, M., Peng, F., Wood, B., & Zhang, S. (2013). Photoelectrochemical characterization of hydrogenated TiO2 nanotubes as photoanodes for sensing applications. ACS Applied Materials & Interfaces, 5(21), 11129–11135.

    Article  CAS  Google Scholar 

  80. Pesci, F. M., Wang, G. M., Klug, D. R., Li, Y., & Cowan, A. J. (2013). Efficient suppression of electron–hole recombination in oxygen-deficient hydrogen-treated TiO2 nanowires for photoelectrochemical water splitting. Journal of Physical Chemistry C, 117(48), 25837–25844.

    Article  CAS  Google Scholar 

  81. Zhu, G., Lin, T., Lu, X., Zhao, W., Yang, C., Wang, Z., Yin, H., Liu, Z., Huang, F., & Lin, J. (2013). Black brookite titania with high solar absorption and excellent photocatalytic performance. Journal of Materials Chemistry A, 1, 9650–9653.

    Article  CAS  Google Scholar 

  82. Pei, Z., Ding, L., Lin, H., Weng, S., Zheng, Z., Hou, Y., & Liu, P. (2013). Facile synthesis of defect-mediated TiO2−x with enhanced visible light photocatalytic activity. Journal of Materials Chemistry A, 1, 10099–10102.

    Article  CAS  Google Scholar 

  83. Qiu, J., Lai, C., Gray, E., Li, S., Qiu, S., Strounina, E., Sun, C., Zhao, H., & Zhang, S. (2014). Blue hydrogenated lithium titanate as a high-rate anode material for lithium-ion batteries. Journal of Materials Chemistry A, 2, 6353–6358.

    Article  CAS  Google Scholar 

  84. Zheng, Z., Huang, B., Lu, J., Wang, Z., Qin, X., Zhang, X., Dai, Y., & Whangbo, M.-H. (2012). Hydrogenated titania: Synergy of surface modification and morphology improvement for enhanced photocatalytic activity. Chemical Communications, 48, 5733–5735.

    Article  CAS  Google Scholar 

  85. Tian, M., Samani, M. M., Eres, G., Sachan, R., Yoon, M., Chisholm, M. F., Wang, K., Puretzky, A. A., Rouleau, C. M., Geohegan, D. B., & Duscher, G. (2015). Structure and formation mechanism of black TiO2 nanoparticles. ACS Nano, 9(10), 10482–10488.

    Article  CAS  Google Scholar 

  86. Zuo, F., Wang, L., Wu, T., Zhang, Z., Borchardt, D., & Feng, P. (2010). Self-doped Ti3+ enhanced photocatalyst for hydrogen production under visible light. Journal of the American Chemical Society, 132(34), 11856–11857.

    Article  CAS  Google Scholar 

  87. Wang, J., Zhang, P., Li, X., Zhu, J., & Li, H. (2013). Synchronical pollutant degradation and H2 production on a Ti3+-doped TiO2 visible photocatalyst with dominant (001) facets. Applied Catalysis B: Environmental, 134–135, 198–204.

    Article  Google Scholar 

  88. Zhou, Y., Chen, C., Wang, N., Li, Y., & Ding, H. (2016). Stable Ti3+ self-doped anatase-rutile mixed TiO2 with enhanced visible light utilization and durability. The Journal of Physical Chemistry C, 120, 6116–6124.

    Article  CAS  Google Scholar 

  89. Zhang, X., Wang, J., Hu, W., Zhang, K., Sun, B., Tian, G., Jiang, B., Pan, K., & Zhou, W. (2016). Facile strategy to fabricate uniform black TiO2 nanothorns/graphene/black TiO2 nanothorns sandwich like nanosheets for excellent solar-driven photocatalytic performance. ChemCatChem, 8(20), 3240–3246.

    Article  CAS  Google Scholar 

  90. Liu, X., Xing, Z., Zhang, H., Wang, W., Yan, Z., Li, Z., Wu, X., Yu, X., & Zhou, W. (2016). Fabrication of 3D mesoporous black TiO2/MoS2/TiO2 nanosheets for visible-light-driven photocatalysis. ChemSusChem, 9(10), 1118–1124.

    Article  CAS  Google Scholar 

  91. Serra, M., Khan, A., Asihi, A. M., Kosa, S. A., & Garcia, H. (2015). Photocatalytic hydrogen generation from water–methanol mixtures using “black” anatase obtained by annealing of titanate nanotubes. Materials Today Communications, 4, 63–68.

    Article  CAS  Google Scholar 

  92. Hu, W., Zhou, W., Zhang, K., Zhang, X., Wang, L., Jiang, B., Tian, G., Zhao, D., & Fu, H. (2016). Facile strategy for controllable synthesis of stable mesoporous black TiO2 hollow spheres with efficient solar-driven photocatalytic hydrogen evolution. Journal of Materials Chemistry A, 4, 7495–7502.

    Article  CAS  Google Scholar 

  93. Zhou, W., Li, W., Wang, J.-Q., Qu, Y., Yang, Y., Xie, Y., Zhang, K., Wang, L., Fu, H., & Zhao, D. (2014). Ordered mesoporous black TiO2 as highly efficient hydrogen evolution photocatalyst. Journal of the American Chemical Society, 136(26), 9280–9283.

    Article  CAS  Google Scholar 

  94. Xin, X., Xu, T., Wang, L., & Wang, C. (2016). Ti3+- self doped brookite TiO2 single-crystalline nanosheets with high solar absorption and excellent photocatalytic CO2 reduction. Scientific Reports, 6, 23684.

    Article  CAS  Google Scholar 

  95. Qingli, W., Zhaoguo, Z., Xudong, C., Zhengfeng, H., Peimei, D., Yi, C., & Xiwen, Z. (2015). Photoreduction of CO2 using black TiO2 films under solar light. Journal of CO2 Utilization, 12, 7–11.

    Article  Google Scholar 

  96. Zhao, J., Li, Y., Zhu, Y., Wang, Y., & Wang, C. (2016). Enhanced CO2 photoreduction activity of black TiO2−coated Cu nanoparticles under visible light irradiation: Role of metallic Cu. Applied Catalysis A: General, 510, 34–41.

    Article  CAS  Google Scholar 

  97. Han, B., Wei, W., Chang, L., Cheng, P., & Hu, Y. H. (2016). Efficient visible light photocatalytic CO2 reforming of CH4. ACS Catalysis, 6(2), 494–497.

    Article  CAS  Google Scholar 

  98. Tian, L., Xu, J., Just, M., Green, M., Liu, L., & Chen, X. (2017). Broad range energy absorption enabled by hydrogenated TiO2 nanosheets: From optical to infrared and microwave. Journal of Materials Chemistry C, 5, 4645–4653.

    Article  CAS  Google Scholar 

  99. Zhang, K., Zhou, W., Zhang, X., Qu, Y., Wang, L., Hu, W., Pan, K., Li, M., Xie, Y., Jiang, B., & Tian, G. (2016). Large-scale synthesis of stable mesoporous black TiO2 nanosheets for efficient solar-driven photocatalytic hydrogen evolution via an earth-abundant low-cost biotemplate. RSC Advances, 6, 50506–50512.

    Article  CAS  Google Scholar 

  100. Leshuk, T., Linley, S., & Gu, F. (2013). Hydrogenation processing of TiO2 nanoparticles. Canadian Journal of Chemical Engineering, 91, 799–807.

    Article  CAS  Google Scholar 

  101. Wu, M. C., Chang, I. C., Hsiao, K. C., & Huang, W. K. (2016). Highly visible-light absorbing black TiO2 nanocrystals synthesized by sol–gel method and subsequent heat treatment in low partial pressure H2. Journal of the Taiwan Institute of Chemical Engineers, 63, 430–435.

    Article  CAS  Google Scholar 

  102. Han, L., Ma, Z., Luo, Z., Liu, G., Ma, J., & An, X. (2016). Enhanced visible light and photocatalytic performance of TiO2 nanotubes by hydrogenation at lower temperature. RSC Advances, 6, 6643–6650.

    Article  CAS  Google Scholar 

  103. Yan, Y., Han, M., Konkin, A., Koppe, T., Wang, D., Andreu, T., Chen, G., Vetter, U., Morante, J. R., & Schaaf, P. (2014). Slightly hydrogenated TiO2 with enhanced photocatalytic performance. Journal of Materials Chemistry A, 2, 12708–12716.

    Article  CAS  Google Scholar 

  104. An, H.-R., Park, S. Y., Kim, H., Lee, C. Y., Choi, S., Lee, S. C., Seo, S., Park, E. C., Oh, Y.-K., Song, C.-G., Won, J., Kim, Y. J., Lee, J., Lee, H. U., & Lee, Y.-C. (2016). Advanced nanoporous TiO2 photocatalysts by hydrogen plasma for efficient solar-light photocatalytic application. Scientific Reports, 6, 29683.

    Article  Google Scholar 

  105. Tian, J., Hu, X., Yang, H., Zhou, Y., Cui, H., & Liu, H. (2016). High yield production of reduced TiO2 with enhanced photocatalytic activity. Applied Surface Science, 360, 738–743.

    Article  CAS  Google Scholar 

  106. Yan, B., Zhou, P., Xu, Q., Zhou, X., Xu, D., & Zhu, J. (2016). Engineering disorder into exotic electronic 2D TiO2 nanosheets for enhanced photocatalytic performance. RSC Advances, 6, 6133–6137.

    Article  CAS  Google Scholar 

  107. Ye, M., Jia, J., Wu, Z., Qian, C., Chen, R., O’Brien, P. G., Sun, W., Dong, Y., & Ozin, G. A. (2017). Synthesis of black TiOx nanoparticles by mg reduction of TiO2 nanocrystals and their application for solar water evaporation. Advanced Energy Materials, 7, 1601811.

    Article  Google Scholar 

  108. Xu, C., Song, Y., Lu, L., Cheng, C., Liu, D., Fang, X., & Li, D. (2013). Electrochemically hydrogenated TiO2 nanotubes with improved photoelectrochemical water splitting performance. Nanoscale Research Letters, 8, 391.

    Article  Google Scholar 

  109. Li, H., Chen, Z., Tsang, C. K., Li, Z., Ran, X., Lee, C., & Pan, B. (2014). Electrochemical doping of anatase TiO2 in organic electrolytes for high-performance supercapacitors and photocatalysts. Journal of Materials Chemistry A, 2, 229–236.

    Article  CAS  Google Scholar 

  110. Han, K., Zhang, X., Wang, H., Liu, Y., & Cao, A. (2016). A facile microwaving method to turn titanium oxide into highly active Ti3+ self-doped structure. Journal of Nanoscience and Nanotechnology, 16, 9826–9831.

    Article  CAS  Google Scholar 

  111. Liu, X., Xing, Z., Zhang, Y., Li, Z., Wu, X., Tan, S., Yu, X., Zhu, Q., & Zhou, W. (2017). Fabrication of 3D flower-like black N-TiO2-x@MoS2 for unprecedented-high visible-light-driven photocatalytic performance. Applied Catalysis. B, Environmental, 201, 119–127.

    Article  CAS  Google Scholar 

  112. Fan, C., Fua, X., Shia, L., Yua, S., Qiana, G., & Wanga, Z. (2016). Ultrasonic-induced nanocomposites with anatase@amorphous TiO2 core–shell structure and their photocatalytic activity. RSC Advances, 6, 67444–67448.

    Article  CAS  Google Scholar 

  113. Tian, Z., Cui, H., Zhu, G., Zhao, W., Xu, J., Shao, F., He, J., & Huang, F. (2016). Hydrogen plasma reduced black TiO2-B nanowires for enhanced photoelectrochemical water-splitting. Journal of Power Sources, 325, 697–705.

    Article  CAS  Google Scholar 

  114. Wang, C.-C., & Chou, P.-H. (2016). Effects of various hydrogenated treatments on formation and photocatalytic activity of black TiO2 nanowire arrays. Nanotechnology, 27, 325401.

    Article  Google Scholar 

  115. Xu, J., Tian, Z., Yin, G., Lin, T., & Huang, F. (2017). Controllable reduced black titania with enhanced photoelectrochemical water splitting performance. Dalton Transactions, 46, 1047–1051.

    Article  CAS  Google Scholar 

  116. Wang, H., Lin, T., Zhu, G., Yin, H., Lü, X., Li, Y., & Huang, F. (2015). Colored titania nanocrystals and excellent photocatalysis for water cleaning. Catalysis Communications, 60, 55–59.

    Article  CAS  Google Scholar 

  117. Xin, X., Xu, T., Yin, J., Wang, L., & Wang, C. (2015). Management on the location and concentration of Ti3+ in anatase TiO2 for defects-induced visible-light photocatalysis. Applied Catalysis B: Environmental, 176, 354–362.

    Article  Google Scholar 

  118. Xin, L., & Liu, X. (2015). Black TiO2 inverse opals for visible-light photocatalysis. RSC Advances, 5, 71547–71550.

    Article  CAS  Google Scholar 

  119. Samsudin, E. M., Hamid, S. B. A., Juan, J. C., Basirun, W. J., & Kandjani, A. E. (2015). Surface modification of mixed-phase hydrogenated TiO2 and corresponding photocatalytic response. Applied Surface Science, 359, 883–896.

    Article  CAS  Google Scholar 

  120. Yang, C., Wang, Z., Lin, T., Yin, H., Lü, X., Wan, D., & Xie, X. (2013). Core-shell nanostructured “black” rutile titania as excellent catalyst for hydrogen production enhanced by sulfur doping. Journal of the American Chemical Society, 135(47), 17831–17838.

    Article  CAS  Google Scholar 

  121. Kim, Y., Hwang, H. M., Wang, L., Kim, I., Yoon, Y., & Lee, H. (2016). Solar-light photocatalytic disinfection using crystalline/amorphous low energy bandgap reduced TiO2. Scientific Reports, 6, 25212.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the 2017 Research Fund (1.170013.01) of UNIST (Ulsan National Institute of Science & Technology).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Reddy, P.A.K., Reddy, P.V.L., Vattikuti, S.V.P. (2021). Black TiO2: An Emerging Photocatalyst and Its Applications. In: Balakumar, S., Keller, V., Shankar, M. (eds) Nanostructured Materials for Environmental Applications. Springer, Cham. https://doi.org/10.1007/978-3-030-72076-6_11

Download citation

Publish with us

Policies and ethics