Skip to main content

D-GaussianNet: Adaptive Distorted Gaussian Matched Filter with Convolutional Neural Network for Retinal Vessel Segmentation

  • Conference paper
  • First Online:
Geometry and Vision (ISGV 2021)

Abstract

Automating retinal vessel segmentation is a primary element of computer-aided diagnostic systems for many retinal diseases. It facilitates the inspection of shape, width, tortuosity, and other blood vessel characteristics. In this paper, a new method that incorporates Distorted Gaussian Matched Filters (D-GMFs) with adaptive parameters as part of a Deep Convolutional Architecture is proposed. The D-GaussianNet includes D-GMF units, a variant of the Gaussian Matched Filter that considers curvature, placed at the beginning and end of the network to implicitly indicate that spatial attention should focus on curvilinear structures in the image. Experimental results on datasets DRIVE, STARE, and CHASE show state-of-the-art performance with an accuracy of 0.9565, 0.9647, and 0.9609 and a F1-score of 0.8233, 0.8141, and 0.8077, respectively.

This work is partially supported by CONACyT, Mexico (Doctoral Studies Grants no. 626155 and 626154).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abramoff, M.D., Garvin, M.K., Sonka, M.: Retinal imaging and image analysis. IEEE Rev. Biomed. Eng. 3, 169ā€“208 (2010)

    ArticleĀ  Google ScholarĀ 

  2. Acar, E., Yilmaz, I.: Covid-19 detection on IBM quantum computer with classical-quantum transfer learning. medRxiv (2020)

    Google ScholarĀ 

  3. Amil, P., Reyes-Manzano, C.F., GuzmƔn-Vargas, L., SendiƱa-Nadal, I., Masoller, C.: Network-based features for retinal fundus vessel structure analysis. PloS one 14(7), e0220132 (2019)

    ArticleĀ  Google ScholarĀ 

  4. Badawi, S.A., Fraz, M.M.: Optimizing the trainable B-COSFIRE filter for retinal blood vessel segmentation. PeerJ 6, e5855 (2018)

    ArticleĀ  Google ScholarĀ 

  5. Chalakkala, R.J., Abdullaa, W.H., Hongb, S.C.: Fundus retinal image analyses for screening and diagnosing diabetic retinopathy, macular edema, and glaucoma disorders. Diabetes and Fundus OCT, p. 59 (2020)

    Google ScholarĀ 

  6. Chaudhuri, S., Chatterjee, S., Katz, N., Nelson, M., Goldbaum, M.: Detection of blood vessels in retinal images using two-dimensional matched filters. IEEE Transactions on medical imaging 8(3), 263ā€“269 (1989)

    ArticleĀ  Google ScholarĀ 

  7. Condurache, A.P., Mertins, A.: Segmentation of retinal vessels with a hysteresis binary-classification paradigm. Comput. Medi. Imaging Graph. 36(4), 325ā€“335 (2012)

    ArticleĀ  Google ScholarĀ 

  8. Cruz-Aceves, I., Cervantes-Sanchez, F., Avila-Garcia, M.S.: A novel multiscale gaussian-matched filter using neural networks for the segmentation of x-ray coronary angiograms. J. Healthcare Eng. 2018 (2018). https://doi.org/10.1155/2018/5812059

  9. Feng, S., Zhuo, Z., Pan, D., Tian, Q.: CcNet: a cross-connected convolutional network for segmenting retinal vessels using multi-scale features. Neurocomputing 392, 268ā€“276 (2020)

    ArticleĀ  Google ScholarĀ 

  10. Fraz, M.M., et al.: Ensemble classification system applied for retinal vessel segmentation on child images containing various vessel profiles. In: Campilho, A., Kamel, M. (eds.) Image Analysis and Recognition, pp. 380ā€“389. Springer, Heidelberg (2012)

    ChapterĀ  Google ScholarĀ 

  11. Fu, Q., Li, S., Wang, X.: MSCNN-AM:: a multi-scale convolutional neural network with attention mechanisms for retinal vessel segmentation. IEEE Access 8, 163926ā€“163936 (2020)

    ArticleĀ  Google ScholarĀ 

  12. Geng, L., Li, P., Zhu, W., Chen, X.: M2E-Net: multiscale morphological enhancement network for retinal vessel segmentation. In: Pen, Y., et al. (eds.) PRCV 2020, Part. LNCS, vol. 12305, pp. 493ā€“502. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-60633-6_41

    ChapterĀ  Google ScholarĀ 

  13. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770ā€“778 (2016)

    Google ScholarĀ 

  14. Heidari, S., Naseri, M., Nagata, K.: Quantum selective encryption for medical images. Int. J. Theor. Phys. 58(11), 3908ā€“3926 (2019)

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  15. Henderson, M., Shakya, S., Pradhan, S., Cook, T.: Quanvolutional neural networks: powering image recognition with quantum circuits. Quant. Mach. Intell. 2(1), 1ā€“9 (2020). https://doi.org/10.1007/s42484-020-00012-y

    ArticleĀ  Google ScholarĀ 

  16. Hoover, A., Kouznetsova, V., Goldbaum, M.: Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response. IEEE Trans. Med. Imaging 19(3), 203ā€“210 (2000)

    ArticleĀ  Google ScholarĀ 

  17. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4700ā€“4708 (2017)

    Google ScholarĀ 

  18. Jiang, Z., Zhang, H., Wang, Y., Ko, S.B.: Retinal blood vessel segmentation using fully convolutional network with transfer learning. Comput. Med. Imaging Graph. 68, 1ā€“15 (2018)

    ArticleĀ  Google ScholarĀ 

  19. Jin, Q., Meng, Z., Pham, T.D., Chen, Q., Wei, L., Su, R.: DUNet: a deformable network for retinal vessel segmentation. Knowl.-Based Syst. 178, 149ā€“162 (2019)

    ArticleĀ  Google ScholarĀ 

  20. Khan, M.A.U., Khan, T.M., Bailey, D.G., Soomro, T.A.: A generalized multi-scale line-detection method to boost retinal vessel segmentation sensitivity. Pattern Anal. Appl. 22(3), 1177ā€“1196 (2018). https://doi.org/10.1007/s10044-018-0696-1

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  21. Li, L., Verma, M., Nakashima, Y., Nagahara, H., Kawasaki, R.: Iternet: retinal image segmentation utilizing structural redundancy in vessel networks. In: The IEEE Winter Conference on Applications of Computer Vision, pp. 3656ā€“3665 (2020)

    Google ScholarĀ 

  22. Liew, G., Wang, J.J.: Retinal vascular signs: a window to the heart? Revista EspaƱola de Cardiologia 64(6), 515ā€“521 (2011)

    ArticleĀ  Google ScholarĀ 

  23. Liskowski, P., Krawiec, K.: Segmenting retinal blood vessels with deep neural networks. IEEE Trans. Med. Imaging 35(11), 2369ā€“2380 (2016)

    ArticleĀ  Google ScholarĀ 

  24. Maharana, D.K., Das, P.: Automatic extraction of vessels from newly accessible dataset. In: Soft Computing: Theories and Applications, pp. 1139ā€“1150. Springer (2020). https://doi.org/10.1007/978-981-15-0751-9_105

  25. Mo, J., Zhang, L.: Multi-level deep supervised networks for retinal vessel segmentation. Int. J. Comput. Assist. Radiol. Surg. 12(12), 2181ā€“2193 (2017). https://doi.org/10.1007/s11548-017-1619-0

    ArticleĀ  Google ScholarĀ 

  26. Pal, S., Chatterjee, S., Dey, D., Munshi, S.: Morphological operations with iterative rotation of structuring elements for segmentation of retinal vessel structures. Multidimens. Syst. Signal Process. 30(1), 373ā€“389 (2018). https://doi.org/10.1007/s11045-018-0561-9

    ArticleĀ  MATHĀ  Google ScholarĀ 

  27. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015 Part III. LNCS, vol. 9351, pp. 234ā€“241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    ChapterĀ  Google ScholarĀ 

  28. Sazak, Ƈ., Nelson, C.J., Obara, B.: The multiscale bowler-hat transform for blood vessel enhancement in retinal images. Pattern Recognit. 88, 739ā€“750 (2019)

    ArticleĀ  Google ScholarĀ 

  29. Birgui Sekou, T., Hidane, M., Olivier, J., Cardot, H.: Retinal blood vessel segmentation using a fully convolutional network ā€“ transfer learning from patch- to image-level. In: Shi, Y., Suk, H.-I., Liu, M. (eds.) MLMI 2018. LNCS, vol. 11046, pp. 170ā€“178. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00919-9_20

    ChapterĀ  Google ScholarĀ 

  30. Simard, P.Y., Steinkraus, D., Platt, J.C., et al.: Best practices for convolutional neural networks applied to visual document analysis. In: ICDAR, vol. 3 (2003)

    Google ScholarĀ 

  31. Smith, L.N.: Cyclical learning rates for training neural networks. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 464ā€“472. IEEE (2017)

    Google ScholarĀ 

  32. Soomro, T.A., Khan, T.M., Khan, M.A., Gao, J., Paul, M., Zheng, L.: Impact of ICA-based image enhancement technique on retinal blood vessels segmentation. IEEE Access 6, 3524ā€“3538 (2018)

    ArticleĀ  Google ScholarĀ 

  33. Staal, J., Abramoff, M., Niemeijer, M., Viergever, M., van Ginneken, B.: Ridge based vessel segmentation in color images of the retina. IEEE Trans. Med. Imaging 23(4), 501ā€“509 (2004)

    ArticleĀ  Google ScholarĀ 

  34. Tamim, N., Elshrkawey, M., Abdel Azim, G., Nassar, H.: Retinal blood vessel segmentation using hybrid features and multi-layer perceptron neural networks. Symmetry 12(6), 894 (2020)

    ArticleĀ  Google ScholarĀ 

  35. Trujillo, M.C.R., AlarcĆ³n, T.E., Dalmau, O.S., Ojeda, A.Z.: Segmentation of carbon nanotube images through an artificial neural network. Soft Comput. 21(3), 611ā€“625 (2017)

    ArticleĀ  Google ScholarĀ 

  36. Wang, X., Jiang, X.: Retinal vessel segmentation by a divide-and-conquer funnel-structured classification framework. Signal Process. 165, 104ā€“114 (2019)

    ArticleĀ  Google ScholarĀ 

  37. Zapata, M.A., et al.: Artificial intelligence to identify retinal fundus images, quality validation, laterality evaluation, macular degeneration, and suspected glaucoma. Clin. Ophthalmol. 14, 419 (2020). (Auckland, NZ)

    ArticleĀ  Google ScholarĀ 

  38. Zhang, A., Wang, K.C., Yang, E., Li, J.Q., Chen, C., Qiu, Y.: Pavement lane marking detection using matched filter. Measurement 130, 105ā€“117 (2018)

    ArticleĀ  Google ScholarĀ 

  39. Zhang, Z., Liu, Q., Wang, Y.: Road extraction by deep residual u-net. IEEE Geosci. Remote Sens. Lett. 15(5), 749ā€“753 (2018)

    ArticleĀ  Google ScholarĀ 

  40. ZhaoZhao, J., et al.: Automatic retinal vessel segmentation using multi-scale superpixel chain tracking. Digit. Signal Process. 81, 26ā€“42 (2018)

    ArticleĀ  Google ScholarĀ 

  41. Zhou, M., Jin, K., Wang, S., Ye, J., Qian, D.: Color retinal image enhancement based on luminosity and contrast adjustment. IEEE Trans. Biomed. Eng. 65(3), 521ā€“527 (2017)

    ArticleĀ  Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dora E. Alvarado-Carrillo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Alvarado-Carrillo, D.E., Ovalle-Magallanes, E., Dalmau-CedeƱo, O.S. (2021). D-GaussianNet: Adaptive Distorted Gaussian Matched Filter with Convolutional Neural Network for Retinal Vessel Segmentation. In: Nguyen, M., Yan, W.Q., Ho, H. (eds) Geometry and Vision. ISGV 2021. Communications in Computer and Information Science, vol 1386. Springer, Cham. https://doi.org/10.1007/978-3-030-72073-5_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-72073-5_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-72072-8

  • Online ISBN: 978-3-030-72073-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics