Skip to main content

Applying IoT and Data Analytics to Thermal Comfort: A Review

  • Chapter
  • First Online:
Book cover Machine Intelligence and Data Analytics for Sustainable Future Smart Cities

Part of the book series: Studies in Computational Intelligence ((SCI,volume 971))

Abstract

The widespread popularity of Internet of things (IoT) enables a huge amount of fine-grained thermal comfort and, implicitly, energy efficiency data to be assembled. Meanwhile, the movement toward a human-centric approach in the domain of smart homes has constantly been advancing worldwide. How to collect, prepare, store and employ the huge amount of data collected by the IoT devices to promote and enhance the thermal comfort inside buildings while preserving energy constraints is an important issue. To date, different IoT applications have been introduced in the thermal comfort domain. To provide a thorough overview of the prevailing research and to identify challenges for the upcoming research, this paper conducts a review on the IoT thermal comfort applications and thermal comfort analytics in buildings. Following the three stages of analytics: descriptive, predictive and prescriptive, we propose the basic application areas as thermal comfort analysis, thermal comfort prediction and thermal environment control. We also review the novel techniques endorsed by each application. In addition, we discuss some research trends associated with the topic like machine learning techniques, data privacy and security and federated learning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aggarwal, R., & Das, M. L. (2012). Rfid security in the context of internet of things. In Proceedings of the First International Conference on Security of Internet of Things (pp. 51–56)

    Google Scholar 

  2. Ali, A., Shukor, S. A., Rahim, N., Razlan, Z., Jamal, Z., & Kohlhof, K. (2019). IoT-based smart air conditioning control for thermal comfort. In 2019 IEEE International Conference on Automatic Control and Intelligent Systems (I2CACIS) (pp. 289–294). IEEE

    Google Scholar 

  3. Al-Kuwari, M., Ramadan, A., Ismael, Y., Al-Sughair, L., Gastli, A., & Benammar, M. (2018). Smart-home automation using iot-based sensing and monitoring platform. In 2018 IEEE 12th International Conference on Compatibility, Power Electronics and Power Engineering (CPE-POWERENG 2018) (pp. 1–6). IEEE

    Google Scholar 

  4. Alsaleem, F., Tesfay, M. K., Rafaie, M., Sinkar, K., Besarla, D., & Arunasalam, P. (2020). An IoT framework for modeling and controlling thermal comfort in buildings

    Google Scholar 

  5. ANSI/ASHRAE Standard 55-2013, A. (2013). Thermal environmental conditions for human occupancy

    Google Scholar 

  6. Barbosa, M., & Farshim, P. (2008). Certificateless signcryption. In Proceedings of the 2008 ACM symposium on Information, computer and communications security (pp. 369–372)

    Google Scholar 

  7. Burman, E., Mumovic, D., & Kimpian, J. (2014). Towards measurement and verification of energy performance under the framework of the european directive for energy performance of buildings. Energy, 77, 153–163.

    Article  Google Scholar 

  8. Capozzoli, A., Piscitelli, M. S., Brandi, S., Grassi, D., & Chicco, G. (2018). Automated load pattern learning and anomaly detection for enhancing energy management in smart buildings. Energy, 157, 336–352.

    Article  Google Scholar 

  9. CEN-CENELEC Management Center, E. (2019). Energy performance of buildings—ventilation for buildings—part 1: Indoor environmental input parameters for design and assessment of energy performance of buildings addressing indoor air quality, thermal environment, lighting and acoustics—module m1-6. CEN-CENELEC Management Centre

    Google Scholar 

  10. Chaudhuri, T., Zhai, D., Soh, Y. C., Li, H., & Xie, L. (2018). Random forest based thermal comfort prediction from gender-specific physiological parameters using wearable sensing technology. Energy and Buildings, 166, 391–406.

    Article  Google Scholar 

  11. Chaudhuri, T., Soh, Y. C., Li, H., & Xie, L. (2019). A feedforward neural network based indoor-climate control framework for thermal comfort and energy saving in buildings. Applied Energy, 248, 44–53.

    Article  Google Scholar 

  12. Cherubini, F., Bird, N. D., Cowie, A., Jungmeier, G., Schlamadinger, B., & Woess-Gallasch, S. (2009). Energy-and greenhouse gas-based LCA of biofuel and bioenergy systems: Key issues, ranges and recommendations. Resources, Conservation and Recycling, 53(8), 434–447.

    Article  Google Scholar 

  13. Choi, J. H., & Yeom, D. (2017). Study of data-driven thermal sensation prediction model as a function of local body skin temperatures in a built environment. Building and Environment, 121, 130–147.

    Article  Google Scholar 

  14. Ciabattoni, L., Ferracuti, F., Ippoliti, G., Longhi, S., & Turri, G. (2016). IoT based indoor personal comfort levels monitoring. In 2016 IEEE International Conference on Consumer Electronics (ICCE) (pp. 125–126). IEEE

    Google Scholar 

  15. De Dear, R., & Brager, G. S. (2001). The adaptive model of thermal comfort and energy conservation in the built environment. International Journal of Biometeorology, 45(2), 100–108.

    Article  Google Scholar 

  16. De Dear, R. J., & Brager, G. S. (2002). Thermal comfort in naturally ventilated buildings: revisions to Ashrae standard 55. Energy and Buildings, 34(6), 549–561.

    Article  Google Scholar 

  17. De Dear, R., & Brager, G. S. (1998). Developing an adaptive model of thermal comfort and preference.

    Google Scholar 

  18. En, O. S., Yoshiki, M., Lim, Y., & Tan, Y. (2018). Predictive thermal comfort control for cyber-physical home systems. In 2018 13th Annual Conference on System of Systems Engineering (SoSE) (pp. 444–451). IEEE

    Google Scholar 

  19. Erlinghagen, S., Lichtensteiger, B., & Markard, J. (2015). Smart meter communication standards in Europe-a comparison. Renewable and Sustainable Energy Reviews, 43, 1249–1262.

    Article  Google Scholar 

  20. European centre for medium-range weather forecasts (2020). Retrieved Sept 16, 2020, from https://cds.climate.copernicus.eu/cdsapp#!/dataset/derived-utci-historical?tab=form.

  21. Evangelos, A. K., Nikolaos, D. T., & Anthony, C. B. (2011). Integrating rfids and smart objects into a unified internet of things architecture. Advances in Internet of Things.

    Google Scholar 

  22. Fanger, P. O., et al. (1970). Thermal comfort. analysis and applications in environmental engineering. Thermal comfort. Analysis and Applications in Environmental Engineering.

    Google Scholar 

  23. Fanger, P. O., & Toftum, J. (2002). Extension of the PMV model to non-air-conditioned buildings in warm climates. Energy and Buildings, 34(6), 533–536.

    Article  Google Scholar 

  24. Feldmeier, M., & Paradiso, J. A. (2010). Personalized HVAC control system. In 2010 Internet of Things (IOT) (pp. 1–8). IEEE

    Google Scholar 

  25. Ghahramani, A., Castro, G., Karvigh, S. A., & Becerik-Gerber, B. (2018). Towards unsupervised learning of thermal comfort using infrared thermography. Applied Energy, 211, 41–49.

    Article  Google Scholar 

  26. Grignon-Massé, L., Adnot, J., & Rivière, P. (2008). A preliminary attempt to unify the different approaches of summer comfort evaluation in the European context. Citeseer

    Google Scholar 

  27. Hassan, M. T., Yu, J., Zhu, W., Liu, F., Liu, J., & An, N. (2018). Monitoring thermal comfort with IoT technologies: a pilot study in Chinese eldercare centers. In International Conference on Human Aspects of IT for the Aged Population (pp. 303–314). Springer

    Google Scholar 

  28. Höppe, P. R. (1993). Heat balance modelling. Experientia, 49(9), 741–746.

    Article  Google Scholar 

  29. Hughes, C., Natarajan, S., Liu, C., Chung, W. J., & Herrera, M. (2019). Winter thermal comfort and health in the elderly. Energy Policy, 134, 110954.

    Google Scholar 

  30. ISO, I. (2005). 7730: Ergonomics of the thermal environment–analytical determination and interpretation of thermal comfort using calculation of the PMV and PPD indices and local thermal comfort criteria. Management 3(605), e615.

    Google Scholar 

  31. Jayaraman, P. P., Yang, X., Yavari, A., Georgakopoulos, D., & Yi, X. (2017). Privacy preserving internet of things: From privacy techniques to a blueprint architecture and efficient implementation. Future Generation Computer Systems, 76, 540–549.

    Article  Google Scholar 

  32. Jazizadeh, F., & Jung, W. (2018). Personalized thermal comfort inference using RGB video images for distributed HVAC control. Applied Energy, 220, 829–841.

    Article  Google Scholar 

  33. Khalil, M., Esseghir, M., & Merghem-Boulahia, L. (2020). An IoT environment for estimating occupants’ thermal comfort. In 2020 IEEE 31st Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC) (pp. 1–6). IEEE.

    Google Scholar 

  34. Kim, J., Schiavon, S., & Brager, G. (2018). Personal comfort models-a new paradigm in thermal comfort for occupant-centric environmental control. Building and Environment, 132, 114–124.

    Article  Google Scholar 

  35. Klepeis, N. E., Nelson, W. C., Ott, W. R., Robinson, J. P., Tsang, A. M., Switzer, P., et al. (2001). The national human activity pattern survey (nhaps): A resource for assessing exposure to environmental pollutants. Journal of Exposure Science & Environmental Epidemiology, 11(3), 231–252.

    Article  Google Scholar 

  36. Krafzig, D., Banke, K., & Slama, D. (2005). Enterprise SOA: Service-oriented architecture best practices. Prentice Hall Professional

    Google Scholar 

  37. Laftchiev, E., & Nikovski, D. (2016). An IoT system to estimate personal thermal comfort. In 2016 IEEE 3rd World Forum on Internet of Things (WF-IoT) (pp. 672–677). IEEE.

    Google Scholar 

  38. Lan, L., Wargocki, P., & Lian, Z. (2011). Quantitative measurement of productivity loss due to thermal discomfort. Energy and Buildings, 43(5), 1057–1062.

    Article  Google Scholar 

  39. Langevin, J., Gurian, P. L., & Wen, J. (2015). Tracking the human-building interaction: A longitudinal field study of occupant behavior in air-conditioned offices. Journal of Environmental Psychology, 42, 94–115.

    Article  Google Scholar 

  40. Lee, S., Bilionis, I., Karava, P., & Tzempelikos, A. (2017). A Bayesian approach for probabilistic classification and inference of occupant thermal preferences in office buildings. Building and Environment, 118, 323–343.

    Article  Google Scholar 

  41. Lee, S., Karava, P., Tzempelikos, A., & Bilionis, I. (2019). Inference of thermal preference profiles for personalized thermal environments with actual building occupants. Building and Environment, 148, 714–729.

    Article  Google Scholar 

  42. Leminen, S., Westerlund, M., Rajahonka, M., & Siuruainen, R. (2012). Towards IoT ecosystems and business models. In Internet of things, smart spaces, and next generation networking (pp. 15–26). Springer.

    Google Scholar 

  43. Li, X., Lu, R., Liang, X., Shen, X., Chen, J., & Lin, X. (2011). Smart community: An internet of things application. IEEE Communications Magazine, 49(11), 68–75.

    Article  Google Scholar 

  44. Li, S., Da Xu, L., & Zhao, S. (2015). The internet of things: A survey. Information Systems Frontiers, 17(2), 243–259.

    Article  Google Scholar 

  45. Li, H., Ota, K., & Dong, M. (2018). Learning IoT in edge: Deep learning for the internet of things with edge computing. IEEE Network, 32(1), 96–101.

    Article  Google Scholar 

  46. Ličina, V. F., Cheung, T., Zhang, H., De Dear, R., Parkinson, T., Arens, E., et al. (2018). Development of the Ashrae global thermal comfort database II. Building and Environment, 142, 502–512.

    Article  Google Scholar 

  47. Mahmoud, M. S., & Mohamad, A. A. (2016). A study of efficient power consumption wireless communication techniques/modules for internet of things (IoT) applications.

    Google Scholar 

  48. Marche, C., & Nitti, M. (2019). IoT for the users: Thermal comfort and cost saving. In Proceedings of the ACM MobiHoc Workshop on Pervasive Systems in the IoT Era (pp. 55–60).

    Google Scholar 

  49. McMahan, B., Moore, E., Ramage, D., Hampson, S., & Arcas, B. A. (2017). Communication-efficient learning of deep networks from decentralized data. In Artificial intelligence and statistics (pp. 1273–1282). PMLR.

    Google Scholar 

  50. Megri, A. C., & El Naqa, I. (2016). Prediction of the thermal comfort indices using improved support vector machine classifiers and nonlinear kernel functions. Indoor and Built Environment, 25(1), 6–16.

    Article  Google Scholar 

  51. Molisch, A. F., Balakrishnan, K., Chong, C. C., Emami, S., Fort, A., Karedal, J., Kunisch, J., Schantz, H., Schuster, U., & Siwiak, K. (2004). IEEE 802.15. 4a channel model-final report. IEEE P802 , 15(04), 0662.

    Google Scholar 

  52. Ngu, A. H., Gutierrez, M., Metsis, V., Nepal, S., & Sheng, Q. Z. (2016). IoT middleware: A survey on issues and enabling technologies. IEEE Internet of Things Journal, 4(1), 1–20.

    Article  Google Scholar 

  53. Nicol, J. F., & Humphreys, M. A. (1973). Thermal comfort as part of a self-regulating system.

    Google Scholar 

  54. Pappachan, P., Degeling, M., Yus, R., Das, A., Bhagavatula, S., Melicher, W., Naeini, P.E., Zhang, S., Bauer, L., Kobsa, A., et al. (2017). Towards privacy-aware smart buildings: Capturing, communicating, and enforcing privacy policies and preferences. In 2017 IEEE 37th International Conference on Distributed Computing Systems Workshops (ICDCSW) (pp. 193–198). IEEE.

    Google Scholar 

  55. Park, H., & Rhee, S. B. (2018). Iot-based smart building environment service for occupants’ thermal comfort. Journal of Sensors, 2018.

    Google Scholar 

  56. Peña, M., Biscarri, F., Guerrero, J. I., Monedero, I., & León, C. (2016). Rule-based system to detect energy efficiency anomalies in smart buildings, a data mining approach. Expert Systems with Applications, 56, 242–255.

    Article  Google Scholar 

  57. Ploennigs, J., Clement, J., Pietropaoli, B. (2015). Demo abstract: The immersive reality of building data. In Proceedings of the 2nd ACM International Conference on Embedded Systems for Energy-Efficient Built Environments (pp. 99–100).

    Google Scholar 

  58. Porkodi, R., & Bhuvaneswari, V. (2014). The internet of things (IoT) applications and communication enabling technology standards: An overview. In 2014 International Conference on Intelligent Computing Applications (pp. 324–329). IEEE

    Google Scholar 

  59. Rahmani, A. M., Thanigaivelan, N. K., Gia, T. N., Granados, J., Negash, B., Liljeberg, P., & Tenhunen, H. (2015). Smart e-health gateway: Bringing intelligence to internet-of-things based ubiquitous healthcare systems. In 2015 12th Annual IEEE Consumer Communications and Networking Conference (CCNC) (pp. 826–834). IEEE.

    Google Scholar 

  60. Rajith, A., Soki, S., & Hiroshi, M. (2018). Real-time optimized hvac control system on top of an IoT framework. In 2018 Third International Conference on Fog and Mobile Edge Computing (FMEC) (pp. 181–186). IEEE.

    Google Scholar 

  61. Ramseur, J. L. (2017). Us carbon dioxide emissions trends and projections: Role of the clean power plan and other factors. US Congressional Research Service.

    Google Scholar 

  62. Salamone, F., Belussi, L., Currò, C., Danza, L., Ghellere, M., Guazzi, G., et al. (2018). Integrated method for personal thermal comfort assessment and optimization through users’ feedback, iot and machine learning: a case study. Sensors, 18(5), 1602.

    Article  Google Scholar 

  63. Samli, A. C. (1994). Toward a model of international consumer behavior: Key considerations and research avenues. Journal of International Consumer Marketing, 7(1), 63–84.

    Article  Google Scholar 

  64. Schweiker, M., Abdul-Zahra, A., André, M., Al-Atrash, F., Al-Khatri, H., Alprianti, R. R., et al. (2019). The scales project, a cross-national dataset on the interpretation of thermal perception scales. Scientific Data, 6(1), 1–10.

    Article  Google Scholar 

  65. Sharma, S., Chen, K., & Sheth, A. (2018). Toward practical privacy-preserving analytics for IoT and cloud-based healthcare systems. IEEE Internet Computing, 22(2), 42–51.

    Article  Google Scholar 

  66. Sheng, Z., Yang, S., Yu, Y., Vasilakos, A. V., McCann, J. A., & Leung, K. K. (2013). A survey on the IETF protocol suite for the internet of things: Standards, challenges, and opportunities. IEEE Wireless Communications, 20(6), 91–98.

    Article  Google Scholar 

  67. Shove, E. (2010). Beyond the ABC: Climate change policy and theories of social change. Environment and Planning A, 42(6), 1273–1285.

    Article  Google Scholar 

  68. Shrouf, F., Ordieres, J., & Miragliotta, G. (2014). Smart factories in industry 4.0: A review of the concept and of energy management approached in production based on the internet of things paradigm. In 2014 IEEE International Conference on Industrial Engineering and Engineering Management (pp. 697–701). IEEE.

    Google Scholar 

  69. Smith, M. R., Martinez, T., & Giraud-Carrier, C. (2014). An instance level analysis of data complexity. Machine Learning, 95(2), 225–256.

    Article  MathSciNet  Google Scholar 

  70. Spindler, H. C., & Norford, L. K. (2009). Naturally ventilated and mixed-mode buildings-part ii: Optimal control. Building and Environment, 44(4), 750–761.

    Article  Google Scholar 

  71. Statista/smart home (2020). Retrieved Sept 16, 2020, from https://www.statista.com/outlook/279/100/smart-home/worldwide.

  72. Stojkoska, B. L. R., & Trivodaliev, K. V. (2017). A review of internet of things for smart home: Challenges and solutions. Journal of Cleaner Production, 140, 1454–1464.

    Article  Google Scholar 

  73. Sung, W. T., Hsiao, S. J., & Shih, J. A. (2019). Construction of indoor thermal comfort environmental monitoring system based on the IoT architecture. Journal of Sensors, 2019.

    Google Scholar 

  74. The terraswarm research center (2013). Retrieved Sept 17, 2020, from https://ptolemy.berkeley.edu/projects/terraswarm/

  75. Tomat, V., Ramallo-González, A. P., & Skarmeta Gómez, A. F. (2020). A comprehensive survey about thermal comfort under the IoT paradigm: Is crowdsensing the new horizon? Sensors, 20(16), 4647.

    Article  Google Scholar 

  76. Vissers, D. (2012). The human body as sensor for thermal comfort control. Eindhoven University of Technology.

    Google Scholar 

  77. Wei, C., & Li, Y. (2011). Design of energy consumption monitoring and energy-saving management system of intelligent building based on the internet of things. In 2011 International Conference on Electronics, Communications and Control (ICECC) (pp. 3650–3652). IEEE.

    Google Scholar 

  78. Wei, S., Jones, R., & De Wilde, P. (2014). Driving factors for occupant-controlled space heating in residential buildings. Energy and Buildings, 70, 36–44.

    Article  Google Scholar 

  79. Xie, J., Li, H., Li, C., Zhang, J., & Luo, M. (2020). Review on occupant-centric thermal comfort sensing, predicting, and controlling. Energy and Buildings, 110392.

    Google Scholar 

  80. Yang, L., Yan, H., & Lam, J. C. (2014). Thermal comfort and building energy consumption implications-a review. Applied Energy, 115, 164–173.

    Article  Google Scholar 

  81. Yu, W., Liang, F., He, X., Hatcher, W. G., Lu, C., Lin, J., et al. (2017). A survey on the edge computing for the internet of things. IEEE Access, 6, 6900–6919.

    Article  Google Scholar 

  82. Zang, M., Xing, Z., & Tan, Y. (2019). Iot-based personal thermal comfort control for livable environment. International Journal of Distributed Sensor Networks, 15(7), 1550147719865506.

    Article  Google Scholar 

  83. Zhang, H., Arens, E., Taub, M., Dickerhoff, D., Bauman, F., Fountain, M., et al. (2015). Using footwarmers in offices for thermal comfort and energy savings. Energy and Buildings, 104, 233–243.

    Article  Google Scholar 

  84. Zhang, W., Hu, W., & Wen, Y. (2018). Thermal comfort modeling for smart buildings: A fine-grained deep learning approach. IEEE Internet of Things Journal, 6(2), 2540–2549.

    Article  Google Scholar 

  85. Zhao, Q., Zhao, Y., Wang, F., Wang, J., Jiang, Y., & Zhang, F. (2014). A data-driven method to describe the personalized dynamic thermal comfort in ordinary office environment: From model to application. Building and Environment, 72, 309–318.

    Article  Google Scholar 

  86. Zhao, Y., Genovese, P. V., & Li, Z. (2020). Intelligent thermal comfort controlling system for buildings based On IoT and AI. Future Internet, 12(2), 30.

    Article  Google Scholar 

  87. Zhou, X., Xu, L., Zhang, J., Niu, B., Luo, M., Zhou, G., et al. (2020). Data-driven thermal comfort model via support vector machine algorithms: Insights from ashrae rp-884 database. Energy and Buildings, 211, 109795.

    Article  Google Scholar 

Download references

Acknowledgements

This work is partly supported by grants from Troyes Champagne métropole and the Conseil Départemental de l’Aube.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moez Esseghir .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Khalil, M., Esseghir, M., Merghem-Boulahia, L. (2021). Applying IoT and Data Analytics to Thermal Comfort: A Review. In: Ghosh, U., Maleh, Y., Alazab, M., Pathan, AS.K. (eds) Machine Intelligence and Data Analytics for Sustainable Future Smart Cities. Studies in Computational Intelligence, vol 971. Springer, Cham. https://doi.org/10.1007/978-3-030-72065-0_10

Download citation

Publish with us

Policies and ethics