Skip to main content

On Fourier Restriction for Finite-Type Perturbations of the Hyperbolic Paraboloid

  • Conference paper
  • First Online:
Geometric Aspects of Harmonic Analysis

Part of the book series: Springer INdAM Series ((SINDAMS,volume 45))

  • 723 Accesses

Abstract

In this note, we continue our research on Fourier restriction for hyperbolic surfaces, by studying local perturbations of the hyperbolic paraboloid z = xy, which are of the form z = xy + h(y), where h(y) is a smooth function of finite type. Our results build on previous joint work in which we have studied the case h(y) = y 3∕3 by means of the bilinear method. As it turns out, the understanding of that special case becomes also crucial for the treatment of arbitrary finite type perturbation terms h(y).

To Fulvio at the occasion of his seventieth birthday

The first author was partially supported by the ERC grant 307617. The first two authors were partially supported by the DFG grant MU 761/11-2. The third author was partially supported by the grants PID2019-105599GB-I00/ AEI / 10.13039/501100011033 (Ministerio de Ciencia e Innovación) and MTM2016-76566-P (Ministerio de Ciencia, Innovación y Universidades), Spain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Notes

  1. 1.

    We don’t need to distinguish precisely the two cases δ > 1 and δ ≤ 1 from the Theorem, since the desired bounds are comparable for δ ∼ 1.

References

  1. Bejenaru, I.: Optimal bilinear restriction estimates for general hypersurfaces and the role of the shape operator. Int. Math. Res. Not. IMRN 23, 7109–7147 (2017)

    MathSciNet  MATH  Google Scholar 

  2. Bourgain, J.: Besicovitch-type maximal operators and applications to Fourier analysis. Geom. Funct. Anal. 22, 147–187 (1991)

    Article  MathSciNet  Google Scholar 

  3. Bourgain, J.: Some new estimates on oscillatory integrals. Essays in Fourier Analysis in honor of E. M. Stein. Princeton Math. Ser. 42, pp. 83–112. Princeton University Press, Princeton, (1995)

    Google Scholar 

  4. Bourgain, J.: Estimates for cone multipliers. Oper. Theory Adv. Appl. 77, 1–16 (1995)

    MathSciNet  MATH  Google Scholar 

  5. Bourgain, J., Guth, L., Bounds on oscillatory integral operators based on multilinear estimates. Geom. Funct. Anal. 21, 1239–1295 (2011)

    Article  MathSciNet  Google Scholar 

  6. Buschenhenke, S., Müller, D., Vargas, A.: A Fourier restriction theorem for a two-dimensional surface of finite type. Anal. PDE 10(4), 817–891 (2017)

    Article  MathSciNet  Google Scholar 

  7. Buschenhenke, S., Müller, D., Vargas, A.: A Fourier restriction theorem for a perturbed hyperbolic paraboloid. Proc. London Math. Soc. 120(3), 124–154 (2020)

    Article  MathSciNet  Google Scholar 

  8. Candy, T.: Multi-scale bilinear restriction estimates for general phases. Math. Ann. 375(1–2), 777–843 (2019). https://doi.org/10.1007/s00208-019-01841-4

    Article  MathSciNet  Google Scholar 

  9. Carleson, L.: On the Littlewood-Paley theorem. Report, Mittag-Leffler Inst., Djursholm (1967)

    Google Scholar 

  10. Cho, C.-H., Lee, J.: Improved restriction estimate for hyperbolic surfaces in \({\mathbb R}^3\). J. Funct. Anal. 273(3), 917–945 (2017)

    Google Scholar 

  11. Córdoba, A.: Some remarks on the Littlewood-Paley theory. Rend. Circ. Mat. Palermo Ser II 1(Supplemento), 75–80 (1981)

    Google Scholar 

  12. Greenleaf, A.: Principal curvature and harmonic analysis. Indiana Univ. Math. J. 30(4), 519–537 (1981)

    Article  MathSciNet  Google Scholar 

  13. Guth, L.: A restriction estimate using polynomial partitioning. J. Am. Math. Soc. 29(2), 371–413 (2016)

    Article  MathSciNet  Google Scholar 

  14. Guth, L.: Restriction estimates using polynomial partitioning II. Acta Math. 221(1), 81–142 (2016)

    Article  MathSciNet  Google Scholar 

  15. Ikromov, I.A., Kempe, M., Müller, D.: Estimates for maximal functions associated with hypersurfaces in \({\mathbb R}^3\) and related problems in harmonic analysis. Acta Math. 204, 151–271 (2010)

    Google Scholar 

  16. Ikromov, I.A., Müller, D.: Uniform estimates for the Fourier transform of surface carried measures in \({\mathbb R}^3\) and an application to Fourier restriction. J. Fourier Anal. Appl. 17(6), 1292–1332 (2011)

    Google Scholar 

  17. Ikromov, I.A., Müller, D.: Fourier restriction for hypersurfaces in three dimensions and Newton polyhedra. In: Annals of Mathematics Studies, vol, 194. Princeton University Press, Princeton (2016)

    Google Scholar 

  18. Kim, J.: Some remarks on Fourier restriction estimates (2017). Preprint. arXiv:1702.01231

    Google Scholar 

  19. Lee, S., Bilinear restriction estimates for surfaces with curvatures of different signs. Trans. Am. Math. Soc. 358(8), 3511–2533 (2005)

    Article  MathSciNet  Google Scholar 

  20. Lee, S., Vargas, A., Restriction estimates for some surfaces with vanishing curvatures. J. Funct. Anal. 258 (2010), no. 9, 2884–2909.

    Article  MathSciNet  Google Scholar 

  21. Moyua, A., Vargas, A., Vega, L.: Schrödinger maximal function and restriction properties of the Fourier transform. Int. Math. Res. Notices 16, 793–815 (1996)

    Article  Google Scholar 

  22. Moyua, A., Vargas, A., Vega, L.: Restriction theorems and maximal operators related to oscillatory integrals in \({\mathbb R}^3\). Duke Math. J. 96(3), 547–574 (1999)

    Google Scholar 

  23. Rubio de Francia, J.L.: Estimates for some square functions of Littlewood-Paley type. Publ. Sec. Mat. Univ. Autónoma Barcelona 27(2), 81–108 (1983)

    Google Scholar 

  24. Stein, E.M.: Oscillatory Integrals in Fourier Analysis. Beijing Lectures in Harmonic Analysis. Princeton Univ. Press, Princeton (1986)

    MATH  Google Scholar 

  25. Stovall, B.: Linear and bilinear restriction to certain rotationally symmetric hypersurfaces. Trans. Am. Math. Soc. 369(6), 4093–4117 (2017)

    Article  MathSciNet  Google Scholar 

  26. Stovall, B.: Scale invariant Fourier restriction to a hyperbolic surface. Anal. PDE 12(5), 1215–1224 (2019)

    Article  MathSciNet  Google Scholar 

  27. Strichartz, R.S.: Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations. Duke Math. J. 44(3), 705–714 (1977)

    Article  MathSciNet  Google Scholar 

  28. Tao, T.: Endpoint bilinear restriction theorems for the cone, and some sharp null-form estimates. Math. Z. 238, 215–268 (2001)

    Article  MathSciNet  Google Scholar 

  29. Tao, T.: A Sharp bilinear restriction estimate for paraboloids. Geom. Funct. Anal. 13, 1359–1384 (2003)

    Article  MathSciNet  Google Scholar 

  30. Tomas, P.A.: A restriction theorem for the Fourier transform. Bull. Am. Math. Soc. 81, 477–478 (1975)

    Article  MathSciNet  Google Scholar 

  31. Tao, T., Vargas, A.: A bilinear approach to cone multipliers I. Restriction estimates. Geom. Funct. Anal. 10, 185–215 (2000)

    Article  MathSciNet  Google Scholar 

  32. Tao, T., Vargas, A.: A bilinear approach to cone multipliers II. Applications. Geom. Funct. Anal. 10, 216–258 (2000)

    Article  MathSciNet  Google Scholar 

  33. Tao, T., Vargas, A., Vega, L.: A bilinear approach to the restriction and Kakeya conjectures. J. Am. Math. Soc. 11(4), 967–1000 (1998)

    Article  MathSciNet  Google Scholar 

  34. Vargas, A.: Restriction theorems for a surface with negative curvature. Math. Z. 249, 97–111 (2005)

    Article  MathSciNet  Google Scholar 

  35. Wolff, T.: A sharp bilinear cone restriction estimate. Ann. Math. Second Series 153(3), 661–698 (2001)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to express their sincere gratitude to the referee for many valuable suggestions which have greatly helped to improve the presentation of the material in this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Vargas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Buschenhenke, S., Müller, D., Vargas, A. (2021). On Fourier Restriction for Finite-Type Perturbations of the Hyperbolic Paraboloid. In: Ciatti, P., Martini, A. (eds) Geometric Aspects of Harmonic Analysis. Springer INdAM Series, vol 45. Springer, Cham. https://doi.org/10.1007/978-3-030-72058-2_5

Download citation

Publish with us

Policies and ethics