Skip to main content

Stress Fractures in Sport: Spine

  • Chapter
  • First Online:
Fractures in Sport

Abstract

Stress reactions of the pars interarticularis is termed spondylolysis and plays a major role in debilitating back pain in the adolescent athlete. While many athletes will rest and ultimately improve, the adolescent who ignores their symptoms may experience persistence or worsening back pain and may ultimately develop other signs such as hamstring tightness or neurologic compromise. While imaging modalities have been scrutinized, recent algorithms have been published to guide evaluation. Surgical management is reserved for cases that do not respond to conservative treatment, or in those with neurologic compromise. Outcomes are generally favorable, though surgeons should be aware of the potential complications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wiltse LL, Newman PH, Macnab I. Classification of spondylolisis and spondylolisthesis. Clin Orthop Relat Res. 1976;(117):23–9.

    Google Scholar 

  2. Fredrickson BE, Baker D, McHolick WJ, Yuan HA, Lubicky JP. The natural history of spondylolysis and spondylolisthesis. J Bone Joint Surg Am. 1984;66:699–707.

    Article  CAS  PubMed  Google Scholar 

  3. Dellestable F, Gaucher A. Clay-shoveler’s fracture. Stress fracture of the lower cervical and upper thoracic spinous processes. Rev Rhum Engl Ed. 1998;65:575–82.

    CAS  PubMed  Google Scholar 

  4. Posthuma de Boer J, van Wulfften Palthe AFY, Stadhouder A, Bloemers FW. The clay Shoveler’s fracture: a case report and review of the literature. J Emerg Med. 2016;51:292–7.

    Article  PubMed  Google Scholar 

  5. Kang D-H, Lee S-H. Multiple spinous process fractures of the thoracic vertebrae (Clay-Shoveler’s fracture) in a beginning golfer: a case report. Spine. 2009;34:E534–7.

    Article  PubMed  Google Scholar 

  6. Panteliadis P, Nagra NS, Edwards KL, Behrbalk E, Boszczyk B. Athletic population with spondylolysis: review of outcomes following surgical repair or conservative management. Global Spine J. 2016;6:615–25.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Tallarico RA, Madom IA, Palumbo MA. Spondylolysis and spondylolisthesis in the athlete. Sports Med Arthrosc. 2008;16:32–8.

    Article  PubMed  Google Scholar 

  8. O’Brien CP, Williams C, Duffy G. Lumbar spine stress fracture in a young athlete. Phys Sportsmed. 1997;25:92–8.

    Article  PubMed  Google Scholar 

  9. Standaert CJ, Herring SA. Spondylolysis: a critical review. Br J Sports Med. 2000;34:415–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ko S-B, Lee S-W. Prevalence of spondylolysis and its relationship with low back pain in selected population. Clin Orthop Surg. 2011;3:34–8.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Gregg CD, Dean S, Schneiders AG. Variables associated with active spondylolysis. Phys Ther Sport. 2009;10:121–4.

    Article  PubMed  Google Scholar 

  12. Beutler WJ, Fredrickson BE, Murtland A, Sweeney CA, Grant WD, Baker D. The natural history of spondylolysis and spondylolisthesis. Spine. 2003;28:1027–35.

    PubMed  Google Scholar 

  13. Wiltse LL. 5 Etiology of spondylolisthesis. Clin Orthop Relat Res. 1957;10:48–60.

    CAS  Google Scholar 

  14. Rosenberg NJ, Bargar WL, Friedman B. The incidence of spondylolysis and spondylolisthesis in nonambulatory patients. Spine. 1981;6:35–8.

    Article  CAS  PubMed  Google Scholar 

  15. Sonne-Holm S, Jacobsen S, Rovsing HC, Monrad H, Gebuhr P. Lumbar spondylolysis: a life long dynamic condition? A cross sectional survey of 4.151 adults. Eur Spine J. 2007;16:821–8.

    Article  PubMed  Google Scholar 

  16. Amato M, Totty WG, Gilula LA. Spondylolysis of the lumbar spine: demonstration of defects and laminal fragmentation. Radiology. 1984;153:627–9.

    Article  CAS  PubMed  Google Scholar 

  17. Brooks BK, Southam SL, Mlady GW, Logan J, Rosett M. Lumbar spine spondylolysis in the adult population: using computed tomography to evaluate the possibility of adult onset lumbar spondylosis as a cause of back pain. Skelet Radiol. 2010;39:669–73.

    Article  Google Scholar 

  18. Micheli LJ, Wood R. Back pain in young athletes. Significant differences from adults in causes and patterns. Arch Pediatr Adolesc Med. 1995;149:15–8.

    Article  CAS  PubMed  Google Scholar 

  19. Rossi F, Dragoni S. The prevalence of spondylolysis and spondylolisthesis in symptomatic elite athletes: radiographic findings. Radiography. 2001;7:37–42.

    Article  Google Scholar 

  20. Berger RG, Doyle SM. Spondylolysis 2019 update. Curr Opin Pediatr. 2019;31:61–8.

    Article  PubMed  Google Scholar 

  21. Neumann DA. Kinesiology of the musculoskeletal system: foundations for rehabilitation. St. Louis: Mosby/Elsevier; 2010.

    Google Scholar 

  22. Sakai T, Sairyo K, Suzue N, Kosaka H, Yasui N. Incidence and etiology of lumbar spondylolysis: review of the literature. J Orthop Sci. 2010;15:281–8.

    Article  PubMed  Google Scholar 

  23. Rossi F. Spondylolysis, spondylolisthesis and sports. J Sports Med Phys Fitness. 1978;18:317–40.

    CAS  PubMed  Google Scholar 

  24. Soler T, Calderón C. The prevalence of spondylolysis in the Spanish elite athlete. Am J Sports Med. 2000;28:57–62.

    Article  CAS  PubMed  Google Scholar 

  25. McCarroll JR, Miller JM, Ritter MA. Lumbar spondylolysis and spondylolisthesis in college football players. A prospective study. Am J Sports Med. 1986;14:404–6.

    Article  CAS  PubMed  Google Scholar 

  26. Castinel BH, Adam P, Prat C. A stress fracture of the lumbar spine in a professional rugby player. Br J Sports Med. 2007;41:337–8.

    Article  PubMed  Google Scholar 

  27. Nyska M, Constantini N, Calé-Benzoor M, Back Z, Kahn G, Mann G. Spondylolysis as a cause of low back pain in swimmers. Int J Sports Med. 2000;21:375–9.

    Article  CAS  PubMed  Google Scholar 

  28. Grogan JP, Hemminghytt S, Williams AL, Carrera GF, Haughton VM. Spondylolysis studied with computed tomography. Radiology. 1982;145:737–42.

    Article  CAS  PubMed  Google Scholar 

  29. Chosa E, Totoribe K, Tajima N. A biomechanical study of lumbar spondylolysis based on a three-dimensional finite element method. J Orthop Res. 2004;22:158–63.

    Article  PubMed  Google Scholar 

  30. Fujii K, Katoh S, Sairyo K, Ikata T, Yasui N. Union of defects in the pars interarticularis of the lumbar spine in children and adolescents. J Bone Joint Surg. 2004;86-B:225–31.

    Article  Google Scholar 

  31. Bugg WG, Lewis M, Juette A, Cahir JG, Toms AP. Lumbar lordosis and pars interarticularis fractures: a case–control study. Skelet Radiol. 2012;41:817–22.

    Article  Google Scholar 

  32. Sairyo K, Katoh S, Sasa T, Yasui N, Goel VK, Vadapalli S, Masuda A, Biyani A, Ebraheim N. Athletes with unilateral spondylolysis are at risk of stress fracture at the contralateral pedicle and pars interarticularis: a clinical and biomechanical study. Am J Sports Med. 2005;33:583–90.

    Article  PubMed  Google Scholar 

  33. Morita T, Ikata T, Katoh S, Miyake R. Lumbar spondylolysis in children and adolescents. J Bone Joint Surg. 1995;77-B:620–5.

    Article  Google Scholar 

  34. Sairyo K, Katoh S, Takata Y, Terai T, Yasui N, Goel VK, Masuda A, Vadapalli S, Biyani A, Ebraheim N. MRI signal changes of the pedicle as an indicator for early diagnosis of spondylolysis in children and adolescents: a clinical and biomechanical study. Spine. 2006;31:206–11.

    Article  PubMed  Google Scholar 

  35. McCleary MD, Congeni JA. Current concepts in the diagnosis and treatment of spondylolysis in young athletes. Curr Sports Med Rep. 2007;6:62–6.

    PubMed  Google Scholar 

  36. Purcell L, Micheli L. Low back pain in young athletes. Sports Health. 2009;1:212–22.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Anderson SJ. Assessment and management of the pediatric and adolescent patient with low back pain. Phys Med Rehabil Clin N Am. 1991;2:157–85.

    Article  Google Scholar 

  38. Ciullo JV, Jackson DW. Pars interarticularis stress reaction, spondylolysis, and spondylolisthesis in gymnasts. Clin Sports Med. 1985;4:95–110.

    Article  CAS  PubMed  Google Scholar 

  39. Masci L, Pike J, Malara F, Phillips B, Bennell K, Brukner P. Use of the one-legged hyperextension test and magnetic resonance imaging in the diagnosis of active spondylolysis. Br J Sports Med. 2006;40:940–6; discussion 946.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Libson E, Bloom RA, Dinari G, Robin GC. Oblique lumbar spine radiographs: importance in young patients. Radiology. 1984;151:89–90.

    Article  CAS  PubMed  Google Scholar 

  41. Beck NA, Miller R, Baldwin K, Zhu X, Spiegel D, Drummond D, Sankar WN, Flynn JM. Do oblique views add value in the diagnosis of spondylolysis in adolescents? J Bone Joint Surg Am. 2013;95:e65–1.

    Article  PubMed  Google Scholar 

  42. Yang J, Servaes S, Edwards K, Zhuang H. Prevalence of stress reaction in the pars interarticularis in pediatric patients with new-onset lower back pain. Clin Nucl Med. 2013;38(2):110–4.

    Article  PubMed  Google Scholar 

  43. Standaert CJ, Herring SA. Expert opinion and controversies in sports and musculoskeletal medicine: the diagnosis and treatment of spondylolysis in adolescent athletes. Arch Phys Med Rehabil. 2007;88:537–40.

    Article  PubMed  Google Scholar 

  44. Miller R, Beck NA, Sampson NR, Zhu X, Flynn JM, Drummond D. Imaging modalities for low back pain in children: a review of spondyloysis and undiagnosed mechanical back pain. J Pediatr Orthop. 2013;33:282–8.

    Article  PubMed  Google Scholar 

  45. Fadell MF, Gralla J, Bercha I, Stewart JR, Harned RK, Ingram JD, Miller AL, Strain JD, Weinman JP. CT outperforms radiographs at a comparable radiation dose in the assessment for spondylolysis. Pediatr Radiol. 2015;45:1026–30.

    Article  PubMed  Google Scholar 

  46. Campbell RSD, Grainger AJ, Hide IG, Papastefanou S, Greenough CG. Juvenile spondylolysis: a comparative analysis of CT, SPECT and MRI. Skelet Radiol. 2005;34:63–73.

    Article  CAS  Google Scholar 

  47. Tofte JN, CarlLee TL, Holte AJ, Sitton SE, Weinstein SL. Imaging pediatric spondylolysis: a systematic review. Spine. 2017;42:777–82.

    Article  PubMed  Google Scholar 

  48. Dhouib A, Tabard-Fougere A, Hanquinet S, Dayer R. Diagnostic accuracy of MR imaging for direct visualization of lumbar pars defect in children and young adults: a systematic review and meta-analysis. Eur Spine J. 2018;27:1058–66.

    Article  PubMed  Google Scholar 

  49. Finkenstaedt T, Siriwanarangsun P, Achar S, Carl M, Finkenstaedt S, Abeydeera N, Chung CB, Bae WC. Ultrashort time-to-echo magnetic resonance imaging at 3 T for the detection of spondylolysis in cadaveric spines: comparison with CT. Investig Radiol. 2019;54:32–8.

    Article  Google Scholar 

  50. Bouras T, Korovessis P. Management of spondylolysis and low-grade spondylolisthesis in fine athletes. A comprehensive review. Eur J Orthop Surg Traumatol. 2015;25(Suppl 1):S167–75.

    Article  PubMed  Google Scholar 

  51. Klein G, Mehlman CT, McCarty M. Nonoperative treatment of spondylolysis and grade I spondylolisthesis in children and young adults: a meta-analysis of observational studies. J Pediatr Orthop. 2009;29:146–56.

    Article  PubMed  Google Scholar 

  52. El Rassi G, Takemitsu M, Glutting J, Shah SA. Effect of sports modification on clinical outcome in children and adolescent athletes with symptomatic lumbar spondylolysis. Am J Phys Med Rehabil. 2013;92:1070–4.

    Article  PubMed  Google Scholar 

  53. Arima H, Suzuki Y, Togawa D, Mihara Y, Murata H, Matsuyama Y. Low-intensity pulsed ultrasound is effective for progressive-stage lumbar spondylolysis with MRI high-signal change. Eur Spine J. 2017;26:3122–8.

    Article  PubMed  Google Scholar 

  54. Tsukada M, Takiuchi T, Watanabe K. Low-intensity pulsed ultrasound for early-stage lumbar spondylolysis in young athletes. Clin J Sport Med. 2017; https://doi.org/10.1097/JSM.0000000000000531.

  55. Syrmou E, Tsitsopoulos PP, Marinopoulos D, Tsonidis C, Anagnostopoulos I. Spondylolysis: a review and reappraisal. Hippokratia. 2010;14(1):17–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Eddy D, Congeni J, Loud K. A review of spine injuries and return to play. Clin J Sport Med. 2005;15(6):453–8.

    Article  PubMed  Google Scholar 

  57. Buck JE. Direct repair of the defect in spondylolisthesis. Preliminary report. J Bone Joint Surg Br. 1970;52:432–7.

    Article  CAS  PubMed  Google Scholar 

  58. Rajasekaran S, Subbiah M, Shetty A. Direct repair of lumbar spondylolysis by Buck′s technique. Indian J Orthop. 2011;45:136.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Johnson GV, Thompson AG. The Scott wiring technique for direct repair of lumbar spondylolysis. J Bone Joint Surg Br. 1992;74:426–30.

    Article  CAS  PubMed  Google Scholar 

  60. Goldstein MJ, Bruffey J, Eastlack RK. New minimally invasive technique for direct pars interarticularis osteosynthesis using cortical screws and spinous-process modular link. Spine. 2016;41:E1421–4.

    Article  PubMed  Google Scholar 

  61. Cheung EV, Herman MJ, Cavalier R, Pizzutillo PD. Spondylolysis and spondylolisthesis in children and adolescents: II. Surgical management. J Am Acad Orthop Surg. 2006;14:488–98.

    Article  PubMed  Google Scholar 

  62. Muschik M, Zippel H, Perka C. Surgical management of severe spondylolisthesis in children and adolescents. Anterior fusion in situ versus anterior spondylodesis with posterior transpedicular instrumentation and reduction. Spine (Phila Pa 1976). 1997;22:2036–42; discussion 2043.

    Article  CAS  Google Scholar 

  63. DeWald CJ, Vartabedian JE, Rodts MF, Hammerberg KW. Evaluation and management of high-grade spondylolisthesis in adults. Spine. 2005;30:S49–59.

    Article  PubMed  Google Scholar 

  64. Lenke LG, Bridwell KH, Bullis D, Betz RR, Baldus C, Schoenecker PL. Results of in situ fusion for isthmic spondylolisthesis. J Spinal Disord. 1992;5:433–42.

    Article  CAS  PubMed  Google Scholar 

  65. Schär RT, Sutter M, Mannion AF, Eggspühler A, Jeszenszky D, Fekete TF, Kleinstück F, Haschtmann D. Outcome of L5 radiculopathy after reduction and instrumented transforaminal lumbar interbody fusion of high-grade L5–S1 isthmic spondylolisthesis and the role of intraoperative neurophysiological monitoring. Eur Spine J. 2017;26:679–90.

    Article  PubMed  Google Scholar 

  66. Sys J, Michielsen J, Bracke P, Martens M, Verstreken J. Nonoperative treatment of active spondylolysis in elite athletes with normal X-ray findings: literature review and results of conservative treatment. Eur Spine J. 2001;10:498–504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Miller SF, Congeni J, Swanson K. Long-term functional and anatomical follow-up of early detected spondylolysis in young athletes. Am J Sports Med. 2004;32:928–33.

    Article  PubMed  Google Scholar 

  68. Muschik M, Hähnel H, Robinson PN, Perka C, Muschik C. Competitive sports and the progression of spondylolisthesis. J Pediatr Orthop. 1996;16:364–9.

    Article  CAS  PubMed  Google Scholar 

  69. Tsirikos AI, Garrido EG. Spondylolysis and spondylolisthesis in children and adolescents. J Bone Joint Surg Br. 2010;92:751–9.

    Article  CAS  PubMed  Google Scholar 

  70. Radcliff KE, Kepler CK, Jakoi A, Sidhu GS, Rihn J, Vaccaro AR, Albert TJ, Hilibrand AS. Adjacent segment disease in the lumbar spine following different treatment interventions. Spine J. 2013;13:1339–49.

    Article  PubMed  Google Scholar 

  71. Standaert CJ. Spondylolysis in the adolescent athlete. Clin J Sport Med. 2002;12:119–22.

    Article  PubMed  Google Scholar 

  72. Frisch A, Croisier J-L, Urhausen A, Seil R, Theisen D. Injuries, risk factors and prevention initiatives in youth sport. Br Med Bull. 2009;92:95–121.

    Article  PubMed  Google Scholar 

  73. Nau E, Hanney WJ, Kolber MJ. Spinal conditioning for athletes with lumbar spondylolysis and spondylolisthesis. Strength Condit J. 2008;30:43–52.

    Article  Google Scholar 

  74. Yamaguchi KT Jr, Myung KS, Alonso MA, Skaggs DL. Clay-shoveler’s fracture equivalent in children. Spine. 2012;37:E1672–5.

    Article  PubMed  Google Scholar 

  75. Olivier EC, Muller E, Janse van Rensburg DC. Clay-shoveler fracture in a paddler: a case report. Clin J Sport Med. 2016;26:e69–70.

    Article  PubMed  Google Scholar 

  76. Nuber GW, Schafer MF. Clay shovelers’ injuries. A report of two injuries sustained from football. Am J Sports Med. 1987;15:182–3.

    Article  CAS  PubMed  Google Scholar 

  77. Hetsroni I, Mann G, Dolev E, Morgenstern D, Nyska M. Clay shoveler’s fracture in a volleyball player: revealing an unusual source of pain. Phys Sportsmed. 2005;33:38–42.

    Article  PubMed  Google Scholar 

  78. Herrick RT. Clay-shoveler’s fracture in power-lifting. Am J Sports Med. 1981;9:29–30.

    Article  CAS  PubMed  Google Scholar 

  79. Kaloostian PE, Kim JE, Calabresi PA, Bydon A, Witham T. Clay-shoveler’s fracture during indoor rock climbing. Orthopedics. 2013;36:e381–3.

    Article  PubMed  Google Scholar 

  80. Victor B, Feldman FA. An atypical clay shoveler’s fracture: a case report. J Can Chiropr Assoc. 2001;45:213.

    Google Scholar 

  81. Umredkar A, Sura S, Mohindra S. Multiple contiguous isolated spinous process fracture (clay-shoveler’s fracture) of the cervicodorsal spine. Neurol India. 2011;59:788–9.

    Article  PubMed  Google Scholar 

  82. Cancelmo JJ Jr. Clay shoveler’s fracture. A helpful diagnostic sign. Am J Roentgenol Radium Therapy, Nucl Med. 1972;115:540–3.

    Article  Google Scholar 

  83. Lin JT, Lee JL, Lee ST. Evaluation of occult cervical spine fractures on radiographs and CT. Emerg Radiol. 2003;10:128–34.

    Article  PubMed  Google Scholar 

  84. Brown CN, McKenna P. A Wii™-related clay-shoveler’s fracture. ScientificWorldJournal. 2009;9:1190–1.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Murphy RF, Hedequist D. Excision of symptomatic spinous process nonunion in adolescent athletes. Am J Orthop (Belle Mead NJ). 2015;44:515–7.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Review

Review

1.1 Questions

Multiple Choice

  1. 1.

    Lumbar spondylolysis involves injury to which anatomical structure:

    1. A.

      The vertebral body

    2. B.

      The nucleus pulposus

    3. C.

      Spinous process

    4. D.

      Pars interarticularis

  2. 2.

    Classification of spondylolysis is important due to all the following EXCEPT for:

    1. A.

      Unilateral lesions can progress to become bilateral lesions if not identified

    2. B.

      Early, progressive, and terminal lesions may require different treatment approaches and have different clinical outcomes

    3. C.

      The upper levels of the lumbar spine are more commonly affected

    4. D.

      Factors such as a steeper L5-S1 pelvic tilt and higher degree of lumbar lordosis can result in worse responses to conservative management

  3. 3.

    All the following are clinical exam findings associated with lumbar spondylolysis EXCEPT for:

    1. A.

      Midline low back pain that may radiate to the buttock

    2. B.

      Radiculopathy

    3. C.

      Pain worsens with low back extension

    4. D.

      Hamstring and/or hip flexor tightness

  4. 4.

    Treatment of clay shoveler’s fracture may include all the following EXCEPT for:

    1. A.

      A brief period of cervical bracing

    2. B.

      Pain and symptom control

    3. C.

      Immediate surgical management

    4. D.

      A graduated return to sport

1.2 Answers

  1. 5.

    Briefly explain the pathogenesis of lumbar spondylolysis in athletes:

    ANSWER: Athletes, particularly those with underdeveloped paraspinal muscles and dysplastic facet joints, can place large amounts of strain on their low back when performing certain athletic movements. These movements include repeated extension and flexion of the low back that result in cyclic loading of the lower lumbar spine. In addition, a combination of compression and rotation in the low back can also place stress on the pars interarticularis. Eventually, repeated stress loading and paraspinal muscle fatigue may result in the formation of a stress fracture.

  2. 6.

    Describe the imaging workup of lumbar spondylolysis:

    ANSWER: The imaging workup begins with radiographs of the low back, and can include AP, lateral, and oblique views. If inconclusive, additional tests can be ordered based on the chronicity of the injury, If acute, MRI may be appropriate, as it may be able to diagnose stress fractures earlier than other modalities. Additionally, if the athlete presents with neurological signs, MRI may help identify nerve lesions. If chronic, CT can be used, as it offers better visualization of the bony anatomy. SPECT is also an option that can help diagnose early stress fractures, although it introduces radiation to the patient, and is generally reserved for patients whom MRI or CT is contraindicated.

  3. 7.

    What are the complications associated with surgical treatment of lumbar spondylolysis:

    ANSWER: The most common complication following surgical repair of lumbar spondylolysis is pseudarthrosis. However, non-union may not be necessary for a solid clinical outcome, and revision treatment should be decided on an individual basis. Other complications include progressive spondylolisthesis, neurological injury, and lumbar radiculopathy.

  4. 8.

    Why are C7 and T1 the most common sites for a clay shoveler’s fracture?

    ANSWER: The spinous processes of C7 and T1 are longer and more horizontally oriented than those at adjacent levels. Therefore, pulling from the upper spinal muscles exert a strong perpendicular force to these spinous processes that can result the avulsion fracture. In addition, the ligamentum nuchae, as well as the trapezius and rhomboid muscles, insert to the spine at these levels, resulting in stress during asymmetrical loading of the upper spine.

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sayari, A.J., Baker, J.D., Lopez, G.D. (2021). Stress Fractures in Sport: Spine. In: Robertson, G.A.J., Maffulli, N. (eds) Fractures in Sport. Springer, Cham. https://doi.org/10.1007/978-3-030-72036-0_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-72036-0_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-72035-3

  • Online ISBN: 978-3-030-72036-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics