Agrawal, S., Chatterjee, K., Novotný, P.: Lexicographic ranking supermartingales: an efficient approach to termination of probabilistic programs. Proc. of POPL (2017). https://doi.org/10.1145/3158122
Arora, N.S., Russell, S.J., Sudderth, E.B.: NET–VISA: Network Processing Vertically Integrated Seismic Analysis. Seismol. Soc. Am., Bull. (2013). https://doi.org/10.1785/0120120107
Avanzini, M., Lago, U.D., Yamada, A.: On probabilistic term rewriting. Sci. Comput. Program. (2020). https://doi.org/10.1016/j.scico.2019.102338
Bartocci, E., Kovács, L., Stankovic, M.: Automatic generation of moment-based invariants for prob-solvable loops. In: Proc. of ATVA (2019). https://doi.org/10.1007/978-3-030-31784-3_15
Bartocci, E., Kovács, L., Stankovic, M.: Analysis of bayesian networks via prob-solvable loops. In: Proc. of ICTAC (2020). https://doi.org/10.1007/978-3-030-64276-1_12
Bartocci, E., Kovács, L., Stankovic, M.: Mora - automatic generation of moment-based invariants. In: Proc. of TACAS (2020). https://doi.org/10.1007/978-3-030-45190-5
Bistline, J.E., Blum, D.M., Rinaldi, C., Shields-Estrada, G., Hecker, S.S., Paté-Cornell, M.E.: A Bayesian Model to Assess the Size of North Korea’s Uranium Enrichment Program. Sci. Global Secur. (2015). https://doi.org/10.1080/08929882.2015.1039431
Bournez, O., Garnier, F.: Proving positive almost-sure termination. In: Proc. of RTA (2005). https://doi.org/10.1007/978-3-540-32033-3_24
Bradley, A.R., Manna, Z., Sipma, H.B.: Termination of Polynomial Programs. In: Proc. of VMCAI (2005). https://doi.org/10.1007/b105073
Chakarov, A., Sankaranarayanan, S.: Probabilistic Program Analysis with Martingales. In: Proc. of CAV (2013). https://doi.org/10.1007/978-3-642-39799-8_34
Chatterjee, K., Fu, H., Goharshady, A.K.: Termination Analysis of Probabilistic Programs Through Positivstellensatz’s. In: Proc. of CAV (2016). https://doi.org/10.1007/978-3-319-41528-4_1
Chatterjee, K., Fu, H., Novotný, P., Hasheminezhad, R.: Algorithmic Analysis of Qualitative and Quantitative Termination Problems for Affine Probabilistic Programs. ACM Trans. Program. Lang. Syst. (2018). https://doi.org/10.1145/3174800
Chatterjee, K., Novotný, P., Zikelic, D.: Stochastic Invariants for Probabilistic Termination. In: Proc. of POPL (2017). https://doi.org/10.1145/3009837.3009873
Chen, J., He, F.: Proving almost-sure termination by omega-regular decomposition. In: Proc. of PLDI (2020). https://doi.org/10.1145/3385412.3386002
Cook, B., Podelski, A., Rybalchenko, A.: Terminator: Beyond Safety. In: Proc. of CAV (2006). https://doi.org/10.1007/11817963_37
Cook, B., Podelski, A., Rybalchenko, A.: Proving program termination. Commun. ACM (2011). https://doi.org/10.1145/1941487.1941509
Dal Lago, U., Grellois, C.: Probabilistic termination by monadic affine sized typing. ACM Trans. Program. Lang. Syst. (2019). https://doi.org/10.1145/3293605
Esparza, J., Gaiser, A., Kiefer, S.: Proving Termination of Probabilistic Programs Using Patterns. In: Proc. of CAV (2012). https://doi.org/10.1007/978-3-642-31424-7_14
Ferrer Fioriti, L.L.M., Hermanns, H.: Probabilistic Termination: Soundness, Completeness, and Compositionality. In: Proc. of POPL (2015). https://doi.org/10.1145/2676726.2677001
Fremont, D.J., Dreossi, T., Ghosh, S., Yue, X., Sangiovanni-Vincentelli, A.L., Seshia, S.A.: Scenic: a language for scenario specification and scene generation. In: Proc. of PLDI (2019). https://doi.org/10.1145/3314221.3314633
Giesl, J., Aschermann, C., Brockschmidt, M., Emmes, F., Frohn, F., Fuhs, C., Hensel, J., Otto, C., Plücker, M., Schneider-Kamp, P., Ströder, T., Swiderski, S., Thiemann, R.: Analyzing program termination and complexity automatically with aprove. J. Autom. Reasoning (2017). https://doi.org/10.1007/s10817-016-9388-y
Giesl, J., Giesl, P., Hark, M.: Computing expected runtimes for constant probability programs. In: Proc. of CADE (2019). https://doi.org/10.1007/978-3-030-29436-6_16
Gruntz, D.: On computing limits in a symbolic manipulation system. Ph.D. thesis, ETH Zürich (1996). https://doi.org/10.3929/ETHZ-A-001631582
Hark, M., Frohn, F., Giesl, J.: Polynomial loops: Beyond termination. In: Proc. of LPAR (2020). https://doi.org/10.29007/nxv1
Hark, M., Kaminski, B.L., Giesl, J., Katoen, J.: Aiming low is harder: induction for lower bounds in probabilistic program verification. In: Proc. of POPL (2020). https://doi.org/10.1145/3371105
Heizmann, M., Chen, Y., Dietsch, D., Greitschus, M., Hoenicke, J., Li, Y., Nutz, A., Musa, B., Schilling, C., Schindler, T., Podelski, A.: Ultimate automizer and the search for perfect interpolants - (competition contribution). In: Proc. of TACAS (2018). https://doi.org/10.1007/978-3-319-89963-3_30
Hoare, C.A.R.: An Axiomatic Basis for Computer Programming. Commun. ACM (1969). https://doi.org/10.1145/363235.363259
Huang, M., Fu, H., Chatterjee, K.: New Approaches for Almost-Sure Termination of Probabilistic Programs. In: Proc. of APLAS (2018). https://doi.org/10.1007/978-3-030-02768-1_11
Huang, M., Fu, H., Chatterjee, K., Goharshady, A.K.: Modular verification for almost-sure termination of probabilistic programs. Proc. ACM Program. Lang. (2019). https://doi.org/10.1145/3360555
Kaminski, B.L., Katoen, J.P.: On the hardness of almost-sure termination. In: Proc. of MFCS (2015). https://doi.org/10.1007/978-3-662-48057-1_24
Kaminski, B.L., Katoen, J., Matheja, C., Olmedo, F.: Weakest precondition reasoning for expected runtimes of randomized algorithms. J. ACM (2018). https://doi.org/10.1145/3208102
Kauers, M., Paule, P.: The Concrete Tetrahedron: Symbolic Sums, Recurrence Equations, Generating Functions, Asymptotic Estimates. Springer (2011)
Google Scholar
Kemeny, J.G., Snell, J.L., Knapp, A.W.: Denumerable Markov Chains: with a chapter of Markov Random Fields by David Griffeath. Springer, 2 edn. (1976)
Google Scholar
Kozen, D.: Semantics of probabilistic programs. J. Comput. Syst. Sci. (1981). https://doi.org/10.1016/0022-0000(81)90036-2
Kozen, D.: A probabilistic PDL. J. Comput. Syst. Sci. (1985). https://doi.org/10.1016/0022-0000(85)90012-1
Lengál, O., Lin, A.W., Majumdar, R., Rümmer, P.: Fair termination for parameterized probabilistic concurrent systems. In: Proc. of TACAS (2017). https://doi.org/10.1007/978-3-662-54577-5_29
McIver, A., Morgan, C.: Abstraction, Refinement and Proof for Probabilistic Systems. Springer (2005)
Google Scholar
McIver, A., Morgan, C., Kaminski, B.L., Katoen, J.P.: A New Proof Rule for Almost-sure Termination. Proc. ACM Program. Lang. (2018). https://doi.org/10.1145/3158121
Monniaux, D.: An abstract analysis of the probabilistic termination of programs. In: Proc. of SAS (2001). https://doi.org/10.1007/3-540-47764-0
Moosbrugger, M., Bartocci, E., Katoen, J.P., Kovács, L.: Automated termination analysis of polynomial probabilistic programs (2020)
Google Scholar
de Moura, L.M., Bjørner, N.: Z3: an efficient SMT solver. In: Proc. of TACAS (2008). https://doi.org/10.1007/978-3-540-78800-3
Ngo, V.C., Carbonneaux, Q., Hoffmann, J.: Bounded expectations: resource analysis for probabilistic programs. In: Proc. of PLDI (2018). https://doi.org/10.1145/3192366.3192394
Takisaka, T., Oyabu, Y., Urabe, N., Hasuo, I.: Ranking and repulsing supermartingales for reachability in probabilistic programs. In: Proc. of ATVA (2018). https://doi.org/10.1007/978-3-030-01090-4_28
Yamada, A., Kusakari, K., Sakabe, T.: Nagoya termination tool. In: Proc. of RTA-TLCA (2014). https://doi.org/10.1007/978-3-319-08918-8_32