Abdulla, P.A., Bouajjani, A., Jonsson, B.: On-the-fly analysis of systems with unbounded, lossy FIFO channels. In: Proceedings of the 10th International Conference on Computer Aided Verification (CAV 1998). pp. 305–318 (1998). https://doi.org/10.1007/BFb0028754
Aho, A.V.: Indexed grammars - an extension of context-free grammars. J. ACM 15(4), 647–671 (1968). https://doi.org/10.1145/321479.321488
Atig, M.F., Bouajjani, A., Qadeer, S.: Context-bounded analysis for concurrent programs with dynamic creation of threads. In: Proceedings of TACAS 2009. pp. 107–123 (2009)
Google Scholar
Bachmeier, G., Luttenberger, M., Schlund, M.: Finite automata for the sub- and superword closure of CFLs: Descriptional and computational complexity. In: Proceedings of LATA 2015. pp. 473–485 (2015)
Google Scholar
Berstel, J.: Transductions and context-free languages. Teubner-Verlag (1979)
Google Scholar
Chadha, R., Viswanathan, M.: Decidability results for well-structured transition systems with auxiliary storage. In: CONCUR ’07: Proc. 18th Int. Conf. on Concurrency Theory. LNCS, vol. 4703, pp. 136–150. Springer (2007)
Google Scholar
Clemente, L., Parys, P., Salvati, S., Walukiewicz, I.: The diagonal problem for higher-order recursion schemes is decidable. In: Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in Computer Science, LICS ’16, New York, NY, USA, July 5–8, 2016. pp. 96–105. ACM (2016). https://doi.org/10.1145/2933575.2934527
Courcelle, B.: On constructing obstruction sets of words. Bulletin of the EATCS 44, 178–186 (1991)
Google Scholar
Damm, W.: The IO-and OI-hierarchies. Theoretical Computer Science 20(2), 95–207 (1982)
Google Scholar
Damm, W., Goerdt, A.: An automata-theoretical characterization of the OI-hierarchy. Information and Control 71(1), 1–32 (1986)
Google Scholar
Dufourd, C., Finkel, A., Schnoebelen, P.: Reset nets between decidability and undecidability. In: Proceedings of ICALP 1998. pp. 103–115 (1998)
Google Scholar
Ganty, P., Majumdar, R.: Algorithmic verification of asynchronous programs. ACM Transactions on Programming Languages and Systems (TOPLAS) 34(1), 6 (2012)
Google Scholar
Geeraerts, G., Raskin, J., Begin, L.V.: Well-structured languages. Acta Inf. 44(3–4), 249–288 (2007). https://doi.org/10.1007/s00236-007-0050-3
Greibach, S.A.: Remarks on blind and partially blind one-way multicounter machines. Theoretical Computer Science 7(3), 311 – 324 (1978). https://doi.org/10.1016/0304-3975(78)90020-8
Hague, M., Kochems, J., Ong, C.L.: Unboundedness and downward closures of higher-order pushdown automata. In: POPL 2016: Principles of Programming Languages. pp. 151–163. ACM (2016)
Google Scholar
Hague, M., Murawski, A.S., Ong, C.L., Serre, O.: Collapsible pushdown automata and recursion schemes. In: Proceedings of the Twenty-Third Annual IEEE Symposium on Logic in Computer Science, LICS 2008, 24–27 June 2008, Pittsburgh, PA, USA. pp. 452–461 (2008). https://doi.org/10.1109/LICS.2008.34
Haines, L.H.: On free monoids partially ordered by embedding. Journal of Combinatorial Theory 6(1), 94–98 (1969)
Google Scholar
Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to automata theory, languages, and computation, 3rd Edition. Pearson international edition, Addison-Wesley (2007)
Google Scholar
Jantzen, M.: On the hierarchy of Petri net languages. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications 13(1), 19–30 (1979), http://www.numdam.org/item?id=ITA_1979__13_1_19_0
Jhala, R., Majumdar, R.: Interprocedural analysis of asynchronous programs. In: POPL ’07: Proc. 34th ACM SIGACT-SIGPLAN Symp. on Principles of Programming Languages. pp. 339–350. ACM Press (2007)
Google Scholar
Kobayashi, N.: Types and higher-order recursion schemes for verification of higher-order programs. In: Proceedings of the 36th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2009, Savannah, GA, USA, January 21–23, 2009. pp. 416–428 (2009). https://doi.org/10.1145/1480881.1480933
Kobayashi, N.: Inclusion between the frontier language of a non-deterministic recursive program scheme and the Dyck language is undecidable. Theoretical Computer Science 777, 409–416 (2019).
Google Scholar
Kobayashi, N., Ong, C.L.: Complexity of model checking recursion schemes for fragments of the modal mu-calculus. Logical Methods in Computer Science 7(4) (2011)
Google Scholar
van Leeuwen, J.: Effective constructions in well-partially-ordered free monoids. Discrete Mathematics 21(3), 237–252 (1978). https://doi.org/10.1016/0012-365X(78)90156-5
Majumdar, R., Thinniyam, R.S., Zetzsche, G.: General decidability results for asynchronous shared-memory programs: Higher-order and beyond (2021), http://arxiv.org/abs/2101.08611
Maslov, A.: The hierarchy of indexed languages of an arbitrary level. Doklady Akademii Nauk 217(5), 1013–1016 (1974)
Google Scholar
Mayr, R.: Undecidable problems in unreliable computations. Theoretical Computer Science 297(1–3), 337–354 (2003)
Google Scholar
Ong, L.: Higher-order model checking: An overview. In: 30th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2015, Kyoto, Japan, July 6–10, 2015. pp. 1–15 (2015). https://doi.org/10.1109/LICS.2015.9
Parys, P.: The complexity of the diagonal problem for recursion schemes. In: Proceedings of FSTTCS 2017. Leibniz International Proceedings in Informatics (LIPIcs), vol. 93, pp. 45:1–45:14 (2018)
Google Scholar
Sen, K., Viswanathan, M.: Model checking multithreaded programs with asynchronous atomic methods. In: CAV ’06: Proc. 18th Int. Conf. on Computer Aided Verification. LNCS, vol. 4144, pp. 300–314. Springer (2006)
Google Scholar
Sipser, M.: Introduction to the theory of computation. PWS Publishing Company (1997)
Google Scholar
Thinniyam, R.S., Zetzsche, G.: Regular separability and intersection emptiness are independent problems. In: Proceedings of FSTTCS 2019. Leibniz International Proceedings in Informatics (LIPIcs), vol. 150, pp. 51:1–51:15. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany (2019). https://doi.org/10.4230/LIPIcs.FSTTCS.2019.51
Zetzsche, G.: An approach to computing downward closures. In: ICALP 2015. vol. 9135, pp. 440–451. Springer (2015), the undecidability of \(Z\) intersection is shown in the full version: http://arxiv.org/abs/1503.01068