Adan, A., Alizada, G., Kiraz, Y., Baran, Y., Nalbant, A.: Flow cytometry: basic principles and applications. Critical reviews in biotechnology 37(2), 163–176 (2017)
Google Scholar
Amparore, E.G., Donatelli, S.: Backward solution of Markov chains and Markov regenerative processes: Formalization and applications. Electron. Notes Theor. Comput. Sci. 296, 7–26 (2013)
Google Scholar
Andreychenko, A., Crouzen, P., Mikeev, L., Wolf, V.: On-the-fly uniformization of time-inhomogeneous infinite Markov population models. arXiv preprint arXiv:1006.4425 (2010)
Andreychenko, A., Mikeev, L., Spieler, D., Wolf, V.: Parameter identification for Markov models of biochemical reactions. In: International Conference on Computer Aided Verification. pp. 83–98. Springer (2011)
Google Scholar
Backenköhler, M., Bortolussi, L., Wolf, V.: Control variates for stochastic simulation of chemical reaction networks. In: Bortolussi, L., Sanguinetti, G. (eds.) Computational Methods in Systems Biology. pp. 42–59. Springer, Cham (2019)
Google Scholar
Backenköhler, M., Bortolussi, L., Wolf, V.: Bounding mean first passage times in population continuous-time Markov chains. To appear in Proc. of QEST’20 (2020)
Google Scholar
Barzel, B., Biham, O.: Calculation of switching times in the genetic toggle switch and other bistable systems. Physical Review E 78(4), 041919 (2008)
Google Scholar
Bortolussi, L., Lanciani, R.: Stochastic approximation of global reachability probabilities of Markov population models. In: Computer Performance Engineering - 11th European Workshop, EPEW 2014, Florence, Italy, September 11–12, 2014. Proceedings. pp. 224–239 (2014)
Google Scholar
Bortolussi, L., Lanciani, R., Nenzi, L.: Model checking markov population models by stochastic approximations. Inf. Comput. 262, 189–220 (2018)
Google Scholar
Breuer, L.: From Markov jump processes to spatial queues. Springer Science & Business Media (2003)
Google Scholar
Broemeling, L.D.: Bayesian Inference for Stochastic Processes. CRC Press (2017)
Google Scholar
Buchholz, P.: Exact and ordinary lumpability in finite Markov chains. Journal of applied probability pp. 59–75 (1994)
Google Scholar
Byrne, G.D., Hindmarsh, A.C.: A polyalgorithm for the numerical solution of ordinary differential equations. ACM Transactions on Mathematical Software (TOMS) 1(1), 71–96 (1975)
Google Scholar
Daigle Jr, B.J., Roh, M.K., Gillespie, D.T., Petzold, L.R.: Automated estimation of rare event probabilities in biochemical systems. The Journal of Chemical Physics 134(4), 01B628 (2011)
Google Scholar
Dayar, T., Stewart, W.J.: Quasi lumpability, lower-bounding coupling matrices, and nearly completely decomposable Markov chains. SIAM Journal on Matrix Analysis and Applications 18(2), 482–498 (1997)
Google Scholar
Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. The journal of physical chemistry 81(25), 2340–2361 (1977)
Google Scholar
Golightly, A., Sherlock, C.: Efficient sampling of conditioned Markov jump processes. Statistics and Computing 29(5), 1149–1163 (2019)
Google Scholar
Golightly, A., Wilkinson, D.J.: Bayesian inference for stochastic kinetic models using a diffusion approximation. Biometrics 61(3), 781–788 (2005)
Google Scholar
Golightly, A., Wilkinson, D.J.: Bayesian parameter inference for stochastic biochemical network models using particle Markov chain monte carlo. Interface focus 1(6), 807–820 (2011)
Google Scholar
Grossmann, G., Backenköhler, M., Wolf, V.: Importance of interaction structure and stochasticity for epidemic spreading: A COVID-19 case study. In: Seventeenth international conference on the quantitative evaluation of systems (QEST 2020). IEEE (2020)
Google Scholar
Hajnal, M., Nouvian, M., Šafránek, D., Petrov, T.: Data-informed parameter synthesis for population markov chains. In: International Workshop on Hybrid Systems Biology. pp. 147–164. Springer (2019)
Google Scholar
Hayden, R.A., Stefanek, A., Bradley, J.T.: Fluid computation of passage-time distributions in large Markov models. Theoretical Computer Science 413(1), 106–141 (2012)
Google Scholar
He, S., Peng, Y., Sun, K.: SEIR modeling of the COVID-19 and its dynamics. Nonlinear Dynamics pp. 1–14 (2020)
Google Scholar
Henzinger, T.A., Mateescu, M., Wolf, V.: Sliding window abstraction for infinite Markov chains. In: International Conference on Computer Aided Verification. pp. 337–352. Springer (2009)
Google Scholar
Huang, L., Pauleve, L., Zechner, C., Unger, M., Hansen, A.S., Koeppl, H.: Reconstructing dynamic molecular states from single-cell time series. Journal of The Royal Society Interface 13(122), 20160533 (2016)
Google Scholar
Kuwahara, H., Mura, I.: An efficient and exact stochastic simulation method to analyze rare events in biochemical systems. The Journal of chemical physics 129(16), 10B619 (2008)
Google Scholar
Kwiatkowska, M., Norman, G., Parker, D.: Prism 4.0: Verification of probabilistic real-time systems. In: International conference on computer aided verification. pp. 585–591. Springer (2011)
Google Scholar
Lapin, M., Mikeev, L., Wolf, V.: SHAVE: stochastic hybrid analysis of Markov population models. In: Proceedings of the 14th international conference on Hybrid systems: computation and control. pp. 311–312 (2011)
Google Scholar
Lipshtat, A., Loinger, A., Balaban, N.Q., Biham, O.: Genetic toggle switch without cooperative binding. Physical review letters 96(18), 188101 (2006)
Google Scholar
Loinger, A., Lipshtat, A., Balaban, N.Q., Biham, O.: Stochastic simulations of genetic switch systems. Physical Review E 75(2), 021904 (2007)
Google Scholar
Mikeev, L., Neuhäußer, M.R., Spieler, D., Wolf, V.: On-the-fly verification and optimization of DTA-properties for large Markov chains. Formal Methods in System Design 43(2), 313–337 (2013)
Google Scholar
Mikeev, L., Sandmann, W.: Approximate numerical integration of the chemical master equation for stochastic reaction networks. arXiv preprint arXiv:1907.10245 (2019)
Mikeev, L., Sandmann, W., Wolf, V.: Efficient calculation of rare event probabilities in Markovian queueing networks. In: Proceedings of the 5th International ICST Conference on Performance Evaluation Methodologies and Tools. pp. 186–196 (2011)
Google Scholar
Mikeev, L., Sandmann, W., Wolf, V.: Numerical approximation of rare event probabilities in biochemically reacting systems. In: International Conference on Computational Methods in Systems Biology. pp. 5–18. Springer (2013)
Google Scholar
Milner, P., Gillespie, C.S., Wilkinson, D.J.: Moment closure based parameter inference of stochastic kinetic models. Statistics and Computing 23(2), 287–295 (2013)
Google Scholar
Mode, C.J., Sleeman, C.K.: Stochastic processes in epidemiology: HIV/AIDS, other infectious diseases, and computers. World Scientific (2000)
Google Scholar
Munsky, B., Khammash, M.: The finite state projection algorithm for the solution of the chemical master equation. The Journal of chemical physics 124(4), 044104 (2006)
Google Scholar
Neupane, T., Myers, C.J., Madsen, C., Zheng, H., Zhang, Z.: Stamina: Stochastic approximate model-checker for infinite-state analysis. In: International Conference on Computer Aided Verification. pp. 540–549. Springer (2019)
Google Scholar
Pardoux, E.: Markov processes and applications: algorithms, networks, genome and finance, vol. 796. John Wiley & Sons (2008)
Google Scholar
Rabiner, L., Juang, B.: An introduction to hidden Markov models. IEEE ASSP Magazine 3(1), 4–16 (1986)
Google Scholar
Särkkä, S.: Bayesian filtering and smoothing, vol. 3. Cambridge University Press (2013)
Google Scholar
Schnoerr, D., Cseke, B., Grima, R., Sanguinetti, G.: Efficient low-order approximation of first-passage time distributions. Phys. Rev. Lett. 119, 210601 (Nov 2017). https://doi.org/10.1103/PhysRevLett.119.210601
Schnoerr, D., Sanguinetti, G., Grima, R.: Validity conditions for moment closure approximations in stochastic chemical kinetics. The Journal of chemical physics 141(8), 08B616\_1 (2014)
Google Scholar
Siegal-Gaskins, D., Mejia-Guerra, M.K., Smith, G.D., Grotewold, E.: Emergence of switch-like behavior in a large family of simple biochemical networks. PLoS Comput Biol 7(5), e1002039 (2011)
Google Scholar
Strasser, M., Theis, F.J., Marr, C.: Stability and multiattractor dynamics of a toggle switch based on a two-stage model of stochastic gene expression. Biophysical journal 102(1), 19–29 (2012)
Google Scholar
Ullah, M., Wolkenhauer, O.: Stochastic approaches for systems biology. Springer Science & Business Media (2011)
Google Scholar
Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Jarrod Millman, K., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C., Polat, İ., Feng, Y., Moore, E.W., Vand erPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., Contributors, S...: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020). https://doi.org/10.1038/s41592-019-0686-2
Wildner, C., Koeppl, H.: Moment-based variational inference for Markov jump processes. arXiv preprint arXiv:1905.05451 (2019)
Wilkinson, D.J.: Stochastic modelling for systems biology. CRC Press (2018)
Google Scholar
Zapreev, I., Katoen, J.P.: Safe on-the-fly steady-state detection for time-bounded reachability. In: Third International Conference on the Quantitative Evaluation of Systems-(QEST’06). pp. 301–310. IEEE (2006)
Google Scholar