Skip to main content

A Game for Linear-time–Branching-time Spectroscopy

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 12651)

Abstract

We introduce a generalization of the bisimulation game that can be employed to find all relevant distinguishing Hennessy–Milner logic formulas for two compared finite-state processes. By measuring the use of expressive powers, we adapt the formula generation to just yield formulas belonging to the coarsest distinguishing behavioral preorders/equivalences from the linear-time–branching-time spectrum. The induced algorithm can determine the best fit of (in)equivalences for a pair of processes.

Keywords

  • Process equivalence spectrum
  • Distinguishing formulas
  • Bisimulation games

Data availability

The source code git repository of our implementation can be accessed via https://concurrency-theory.org/ltbt-spectroscope/code/. Code to reproduce the results presented in this paper is available on Zenodo [1].

References

  1. Bisping, B.: Linear-time–branching-time spectroscope: TACAS 2021 edition (2021). https://doi.org/10.5281/zenodo.4475878, archived on Zenodo

  2. Bisping, B., Nestmann, U.: Computing coupled similarity. In: Proceedings of TACAS. pp. 244–261. LNCS, Springer (2019). https://doi.org/10.1007/978-3-030-17462-0_14

  3. Bisping, B., Nestmann, U., Peters, K.: Coupled similarity: the first 32 years. Acta Informatica 57(3-5), 439–463 (2020). https://doi.org/10.1007/s00236-019-00356-4

  4. Chen, X., Deng, Y.: Game characterizations of process equivalences. In: Ramalingam, G. (ed.) Programming Languages and Systems. pp. 107–121. Springer Berlin Heidelberg, Berlin, Heidelberg (2008). https://doi.org/10.1007/978-3-540-89330-1_8

  5. Cleaveland, R.: On automatically explaining bisimulation inequivalence. In: Clarke, E.M., Kurshan, R.P. (eds.) Computer-Aided Verification. pp. 364–372. Springer Berlin Heidelberg, Berlin, Heidelberg (1991). https://doi.org/10.1007/BFb0023750

  6. Cleaveland, R., Hennessy, M.: Testing equivalence as a bisimulation equivalence. Formal Aspects of Computing 5(1), 1–20 (1993). https://doi.org/10.1007/BF01211314

  7. D. Bruda, S., Zhang, Z.: Model checking is refinement – from computation tree logic to failure trace testing. In: Proceedings of the 5th International Conference on Software and Data Technologies - Volume 2: ICSOFT,. pp. 173–178. INSTICC, SciTePress (2010). https://doi.org/10.5220/0003006801730178

  8. de Frutos-Escrig, D., Keiren, J.J.A., Willemse, T.A.C.: Games for bisimulations and abstraction. Logical Methods in Computer Science 13(4) (Nov 2017). https://doi.org/10.23638/LMCS-13(4:15)2017

  9. Gazda, M., Fokkink, W., Massaro, V.: Congruence from the operator’s point of view: Syntactic requirements on modal characterizations. Acta Informatica 57(3-5), 329–351 (10 2020). https://doi.org/10.1007/s00236-019-00355-5

  10. van Glabbeek, R.J.: The linear time–branching time spectrum. In: International Conference on Concurrency Theory. pp. 278–297. Springer (1990). https://doi.org/10.1007/BFb0039066

  11. van Glabbeek, R.J.: The linear time–branching time spectrum II. In: International Conference on Concurrency Theory. pp. 66–81. Springer (1993). https://doi.org/10.1007/3-540-57208-2_6

  12. van Glabbeek, R.J.: The linear time–branching time spectrum I – the semantics of concrete, sequential processes. In: Handbook of Process Algebra. pp. 3–99. Elsevier, Amsterdam (2001). https://doi.org/10.1016/B978-044482830-9/50019-9

  13. Grädel, E.: Finite model theory and descriptive complexity. In: Grädel, E., Kolaitis, P., Libkin, L., Marx, M., Spencer, J., Vardi, M., Venema, Y., Weinstein, S. (eds.) Finite Model Theory and Its Applications, pp. 125–230. Texts in Theoretical Computer Science. An EATCS Series, Springer Berlin Heidelberg (2007). https://doi.org/10.1007/3-540-68804-8_3

  14. Hennessy, M., Milner, R.: On observing nondeterminism and concurrency. In: de Bakker, J., van Leeuwen, J. (eds.) Automata, Languages and Programming. pp. 299–309. Springer Berlin Heidelberg, Berlin, Heidelberg (1980). https://doi.org/10.1007/3-540-10003-2_79

  15. Jasper, M., Schlüter, M., Steffen, B.: Characteristic invariants in Hennessy–Milner logic. Acta Informatica pp. 671–687 (2020). https://doi.org/10.1007/s00236-020-00376-5

  16. König, B., Mika-Michalski, C., Schröder, L.: Explaining non-bisimilarity in a coalgebraic approach: Games and distinguishing formulas. In: Petrişan, D., Rot, J. (eds.) Coalgebraic Methods in Computer Science. pp. 133–154. Springer International Publishing, Cham (2020). https://doi.org/10.1007/978-3-030-57201-3_8

  17. Kučera, A., Esparza, J.: A logical viewpoint on process-algebraic quotients. In: Flum, J., Rodriguez-Artalejo, M. (eds.) Computer Science Logic. pp. 499–514. Springer Berlin Heidelberg, Berlin, Heidelberg (1999). https://doi.org/10.1007/3-540-48168-0_35

  18. Shukla, S.K., Hunt, H.B., Rosenkrantz, D.J.: HORNSAT, model checking, verification and games (1995). https://doi.org/10.1007/3-540-61474-5_61

Download references

Acknowledgments

We are thankful to members of our research group (especially Kim Völlinger), participants of our course Modelle Dynamischer Systeme, and the anonymous reviewers for lots of helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin Bisping .

Editor information

Editors and Affiliations

Rights and permissions

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

Reprints and Permissions

Copyright information

© 2021 The Author(s)

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Bisping, B., Nestmann, U. (2021). A Game for Linear-time–Branching-time Spectroscopy. In: Groote, J.F., Larsen, K.G. (eds) Tools and Algorithms for the Construction and Analysis of Systems. TACAS 2021. Lecture Notes in Computer Science(), vol 12651. Springer, Cham. https://doi.org/10.1007/978-3-030-72016-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-72016-2_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-72015-5

  • Online ISBN: 978-3-030-72016-2

  • eBook Packages: Computer ScienceComputer Science (R0)