Bisping, B.: Linear-time–branching-time spectroscope: TACAS 2021 edition (2021). https://doi.org/10.5281/zenodo.4475878, archived on Zenodo
Bisping, B., Nestmann, U.: Computing coupled similarity. In: Proceedings of TACAS. pp. 244–261. LNCS, Springer (2019). https://doi.org/10.1007/978-3-030-17462-0_14
Bisping, B., Nestmann, U., Peters, K.: Coupled similarity: the first 32 years. Acta Informatica 57(3-5), 439–463 (2020). https://doi.org/10.1007/s00236-019-00356-4
Chen, X., Deng, Y.: Game characterizations of process equivalences. In: Ramalingam, G. (ed.) Programming Languages and Systems. pp. 107–121. Springer Berlin Heidelberg, Berlin, Heidelberg (2008). https://doi.org/10.1007/978-3-540-89330-1_8
Cleaveland, R.: On automatically explaining bisimulation inequivalence. In: Clarke, E.M., Kurshan, R.P. (eds.) Computer-Aided Verification. pp. 364–372. Springer Berlin Heidelberg, Berlin, Heidelberg (1991). https://doi.org/10.1007/BFb0023750
Cleaveland, R., Hennessy, M.: Testing equivalence as a bisimulation equivalence. Formal Aspects of Computing 5(1), 1–20 (1993). https://doi.org/10.1007/BF01211314
D. Bruda, S., Zhang, Z.: Model checking is refinement – from computation tree logic to failure trace testing. In: Proceedings of the 5th International Conference on Software and Data Technologies - Volume 2: ICSOFT,. pp. 173–178. INSTICC, SciTePress (2010). https://doi.org/10.5220/0003006801730178
de Frutos-Escrig, D., Keiren, J.J.A., Willemse, T.A.C.: Games for bisimulations and abstraction. Logical Methods in Computer Science 13(4) (Nov 2017). https://doi.org/10.23638/LMCS-13(4:15)2017
Gazda, M., Fokkink, W., Massaro, V.: Congruence from the operator’s point of view: Syntactic requirements on modal characterizations. Acta Informatica 57(3-5), 329–351 (10 2020). https://doi.org/10.1007/s00236-019-00355-5
van Glabbeek, R.J.: The linear time–branching time spectrum. In: International Conference on Concurrency Theory. pp. 278–297. Springer (1990). https://doi.org/10.1007/BFb0039066
van Glabbeek, R.J.: The linear time–branching time spectrum II. In: International Conference on Concurrency Theory. pp. 66–81. Springer (1993). https://doi.org/10.1007/3-540-57208-2_6
van Glabbeek, R.J.: The linear time–branching time spectrum I – the semantics of concrete, sequential processes. In: Handbook of Process Algebra. pp. 3–99. Elsevier, Amsterdam (2001). https://doi.org/10.1016/B978-044482830-9/50019-9
Grädel, E.: Finite model theory and descriptive complexity. In: Grädel, E., Kolaitis, P., Libkin, L., Marx, M., Spencer, J., Vardi, M., Venema, Y., Weinstein, S. (eds.) Finite Model Theory and Its Applications, pp. 125–230. Texts in Theoretical Computer Science. An EATCS Series, Springer Berlin Heidelberg (2007). https://doi.org/10.1007/3-540-68804-8_3
Hennessy, M., Milner, R.: On observing nondeterminism and concurrency. In: de Bakker, J., van Leeuwen, J. (eds.) Automata, Languages and Programming. pp. 299–309. Springer Berlin Heidelberg, Berlin, Heidelberg (1980). https://doi.org/10.1007/3-540-10003-2_79
Jasper, M., Schlüter, M., Steffen, B.: Characteristic invariants in Hennessy–Milner logic. Acta Informatica pp. 671–687 (2020). https://doi.org/10.1007/s00236-020-00376-5
König, B., Mika-Michalski, C., Schröder, L.: Explaining non-bisimilarity in a coalgebraic approach: Games and distinguishing formulas. In: Petrişan, D., Rot, J. (eds.) Coalgebraic Methods in Computer Science. pp. 133–154. Springer International Publishing, Cham (2020). https://doi.org/10.1007/978-3-030-57201-3_8
Kučera, A., Esparza, J.: A logical viewpoint on process-algebraic quotients. In: Flum, J., Rodriguez-Artalejo, M. (eds.) Computer Science Logic. pp. 499–514. Springer Berlin Heidelberg, Berlin, Heidelberg (1999). https://doi.org/10.1007/3-540-48168-0_35
Shukla, S.K., Hunt, H.B., Rosenkrantz, D.J.: HORNSAT, model checking, verification and games (1995). https://doi.org/10.1007/3-540-61474-5_61