Skip to main content

Goal-Directed Therapy

  • Chapter
  • First Online:
Reducing Mortality in Critically Ill Patients

Abstract

Since the publication of the landmark paper by Dr. Emanuel Rivers in The New England Journal of Medicine in 2001, the world of critical care massively adopted his protocol for the resuscitation of severe sepsis and/or septic shock—which was named “early goal-directed therapy” [1]. The concept of goal-directed therapy rapidly arose from sepsis and was applied to shock in general in the intensive care unit. Goal-directed therapy is a bundle of care that embraces the use of fluids, blood transfusion, and inotropes aiming to precise hemodynamic targets [2]. In case of hypotension or lactate raise, a fluid challenge of 30 ml/kg of crystalloid solution is administered to the patient. Fluid responsiveness is assessed in terms of low central venous pressure (CVP) and decreases in heart rate. In the following hours, hemodynamic targets include: a CVP of 8–12 mmHg, a superior vena cava oxygen saturation (ScvO2) >70% or a mixed venous oxygen saturation (SvO2) >65%, a mean arterial pressure (MAP) ≥65 mmHg, and a urine output ≥0.5 mL/kg/h. Strategies to achieve these target involve additional fluids, transfusion of packed red blood cells or inotrope infusion. In the original study, the application of this protocol reduced mortality by more of one third and halved that of patients with severe sepsis [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rivers E, Nguyen B, Havstad S, et al. Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med. 2001;345(19):1368–77. https://doi.org/10.1056/NEJMoa010307.

    Article  CAS  PubMed  Google Scholar 

  2. Gordon AC, Russell JA. Goal directed therapy: how long can we wait? Crit Care. 2005;9(6):647–8. https://doi.org/10.1186/cc3951.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Investigators PCESS, Yealy DM, Kellum JA, et al. A randomized trial of protocol-based care for early septic shock. N Engl J Med. 2014;370(18):1683–93. https://doi.org/10.1056/NEJMoa1401602.

    Article  CAS  Google Scholar 

  4. Investigators ARISE, ANZICS Clinical Trials Group, Peake SL, et al. Goal-directed resuscitation for patients with early septic shock. N Engl J Med. 2014;371(16):1496–506. https://doi.org/10.1056/NEJMoa1404380.

    Article  CAS  Google Scholar 

  5. Mouncey PR, Osborn TM, Power GS, et al. Trial of early, goal-directed resuscitation for septic shock. N Engl J Med. 2015;372(14):1301–11. https://doi.org/10.1056/NEJMoa1500896.

    Article  CAS  PubMed  Google Scholar 

  6. Investigators PRISM, Rowan KM, Angus DC, et al. Early, goal-directed therapy for septic shock - a patient-level meta-analysis. N Engl J Med. 2017;376(23):2223–34. https://doi.org/10.1056/NEJMoa1701380.

    Article  Google Scholar 

  7. Edriss H. What comes after the early goal directed therapy for sepsis era? J Thorac Dis. 2017;9(10):3514–7. https://doi.org/10.21037/jtd.2017.09.27.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Russell JA, Rush B, Boyd J. Pathophysiology of septic shock. Crit Care Clin. 2018;34(1):43–61. https://doi.org/10.1016/j.ccc.2017.08.005.

    Article  PubMed  Google Scholar 

  9. Finfer S, Bellomo R, Boyce N, et al. A comparison of albumin and saline for fluid resuscitation in the intensive care unit. N Engl J Med. 2004;350(22):2247–56. https://doi.org/10.1056/NEJMoa040232.

    Article  CAS  PubMed  Google Scholar 

  10. Caironi P, Tognoni G, Masson S, et al. Albumin replacement in patients with severe sepsis or septic shock. N Engl J Med. 2014;370(15):1412–21. https://doi.org/10.1056/NEJMoa1305727.

    Article  CAS  PubMed  Google Scholar 

  11. Park CHL, de Almeida JP, de Oliveira GQ, et al. Lactated Ringer's versus 4% albumin on lactated Ringer's in early sepsis therapy in cancer patients: a pilot single-center randomized trial. Crit Care Med. 2019;47(10):e798–805. https://doi.org/10.1097/CCM.0000000000003900.

    Article  CAS  PubMed  Google Scholar 

  12. Xu JY, Chen QH, Xie JF, et al. Comparison of the effects of albumin and crystalloid on mortality in adult patients with severe sepsis and septic shock: a meta-analysis of randomized clinical trials. Crit Care. 2014;18(6):702. https://doi.org/10.1186/s13054-014-0702-y.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Perner A, Haase N, Guttormsen AB, et al. Hydroxyethyl starch 130/0.42 versus Ringer's acetate in severe sepsis. N Engl J Med. 2012;367(2):124–34. https://doi.org/10.1056/NEJMoa1204242.

    Article  CAS  PubMed  Google Scholar 

  14. Brunkhorst FM, Engel C, Bloos F, et al. Intensive insulin therapy and pentastarch resuscitation in severe sepsis. N Engl J Med. 2008;358(2):125–39. https://doi.org/10.1056/NEJMoa070716.

    Article  CAS  PubMed  Google Scholar 

  15. Asfar P, Meziani F, Hamel JF, et al. High versus low blood-pressure target in patients with septic shock. N Engl J Med. 2014;370(17):1583–93. https://doi.org/10.1056/NEJMoa1312173.

    Article  CAS  PubMed  Google Scholar 

  16. Lamontagne F, Meade MO, Hébert PC, et al. Higher versus lower blood pressure targets for vasopressor therapy in shock: a multicentre pilot randomized controlled trial. Intensive Care Med. 2016;42(4):542–50. https://doi.org/10.1007/s00134-016-4237-3.

    Article  CAS  PubMed  Google Scholar 

  17. Marik PE, Cavallazzi R, Vasu T, Hirani A. Dynamic changes in arterial waveform derived variables and fluid responsiveness in mechanically ventilated patients: a systematic review of the literature. Crit Care Med. 2009;37(9):2642–7. https://doi.org/10.1097/CCM.0b013e3181a590da.

    Article  PubMed  Google Scholar 

  18. Biais M, Nouette-Gaulain K, Cottenceau V, Revel P, Sztark F. Uncalibrated pulse contour-derived stroke volume variation predicts fluid responsiveness in mechanically ventilated patients undergoing liver transplantation. Br J Anaesth. 2008;101(6):761–8. https://doi.org/10.1093/bja/aen277.

    Article  CAS  PubMed  Google Scholar 

  19. Lanspa MJ, Grissom CK, Hirshberg EL, Jones JP, Brown SM. Applying dynamic parameters to predict hemodynamic response to volume expansion in spontaneously breathing patients with septic shock. Shock. 2013;39(2):155–60. https://doi.org/10.1097/SHK.0b013e31827f1c6a.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Maughan BC, Seigel TA, Napoli AM. Pleth variability index and fluid responsiveness of hemodynamically stable patients after cardiothoracic surgery. Am J Crit Care. 2015;24(2):172–5. https://doi.org/10.4037/ajcc2015864.

    Article  PubMed  Google Scholar 

  21. Orso D, Paoli I, Piani T, Cilenti FL, Cristiani L, Guglielmo N. Accuracy of ultrasonographic measurements of inferior vena cava to determine fluid responsiveness: a systematic review and meta-analysis. J Intensive Care Med. 2020;35(4):354–63. https://doi.org/10.1177/0885066617752308.

    Article  PubMed  Google Scholar 

  22. Cho RJ, Williams DR, Leatherman JW. Measurement of femoral vein diameter by ultrasound to estimate central venous pressure. Ann Am Thorac Soc. 2016;13(1):81–5. https://doi.org/10.1513/AnnalsATS.201506-337BC.

    Article  PubMed  Google Scholar 

  23. Beaubien-Souligny W, Benkreira A, Robillard P, et al. Alterations in portal vein flow and intrarenal venous flow are associated with acute kidney injury after cardiac surgery: a prospective observational cohort study. J Am Heart Assoc. 2018;7(19):e009961. https://doi.org/10.1161/JAHA.118.009961.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Richard C, Warszawski J, Anguel N, et al. Early use of the pulmonary artery catheter and outcomes in patients with shock and acute respiratory distress syndrome: a randomized controlled trial. JAMA. 2003;290(20):2713–20. https://doi.org/10.1001/jama.290.20.2713.

    Article  CAS  PubMed  Google Scholar 

  25. Parker MM, Peruzzi W. Pulmonary artery catheters in sepsis/septic shock. New Horiz. 1997;5(3):228–32.

    CAS  PubMed  Google Scholar 

  26. Hernández G, Ospina-Tascón GA, Damiani LP, et al. Effect of a resuscitation strategy targeting peripheral perfusion status vs serum lactate levels on 28-day mortality among patients with septic shock: the ANDROMEDA-SHOCK randomized clinical trial. JAMA. 2019;321(7):654–64. https://doi.org/10.1001/jama.2019.0071.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Forsythe SM, Schmidt GA. Sodium bicarbonate for the treatment of lactic acidosis. Chest. 2000;117(1):260–7. https://doi.org/10.1378/chest.117.1.260.

    Article  CAS  PubMed  Google Scholar 

  28. De Backer D, Aldecoa C, Njimi H, Vincent JL. Dopamine versus norepinephrine in the treatment of septic shock: a meta-analysis*. Crit Care Med. 2012;40(3):725–30. https://doi.org/10.1097/CCM.0b013e31823778ee.

    Article  CAS  PubMed  Google Scholar 

  29. Vasu TS, Cavallazzi R, Hirani A, Kaplan G, Leiby B, Marik PE. Norepinephrine or dopamine for septic shock: systematic review of randomized clinical trials. J Intensive Care Med. 2012;27(3):172–8. https://doi.org/10.1177/0885066610396312.

    Article  PubMed  Google Scholar 

  30. McIntyre WF, Um KJ, Alhazzani W, et al. Association of vasopressin plus catecholamine vasopressors vs catecholamines alone with atrial fibrillation in patients with distributive shock: a systematic review and meta-analysis. JAMA. 2018;319(18):1889–900. https://doi.org/10.1001/jama.2018.4528.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Nguyen HB, Lu S, Possagnoli I, Stokes P. Comparative effectiveness of second vasoactive agents in septic shock refractory to norepinephrine. J Intensive Care Med. 2017;32(7):451–9. https://doi.org/10.1177/0885066616647941.

    Article  PubMed  Google Scholar 

  32. Holst LB, Haase N, Wetterslev J, et al. Lower versus higher hemoglobin threshold for transfusion in septic shock. N Engl J Med. 2014;371(15):1381–91. https://doi.org/10.1056/NEJMoa1406617.

    Article  CAS  PubMed  Google Scholar 

  33. Hébert PC, Wells G, Blajchman MA, et al. A multicenter, randomized, controlled clinical trial of transfusion requirements in critical care. Transfusion requirements in critical care investigators, Canadian critical care trials group. N Engl J Med. 1999;340(6):409–17. https://doi.org/10.1056/NEJM199902113400601.

    Article  PubMed  Google Scholar 

  34. Retter A, Wyncoll D, Pearse R, et al. Guidelines on the management of anaemia and red cell transfusion in adult critically ill patients. Br J Haematol. 2013;160(4):445–64. https://doi.org/10.1111/bjh.12143.

    Article  CAS  PubMed  Google Scholar 

  35. National Heart, Lung, and Blood Institute Acute Respiratory Distress Syndrome (ARDS) Clinical Trials Network, Wiedemann HP, Wheeler AP, et al. Comparison of two fluid-management strategies in acute lung injury. N Engl J Med. 2006;354(24):2564–75. https://doi.org/10.1056/NEJMoa062200.

    Article  Google Scholar 

  36. Silversides JA, Major E, Ferguson AJ, et al. Conservative fluid management or deresuscitation for patients with sepsis or acute respiratory distress syndrome following the resuscitation phase of critical illness: a systematic review and meta-analysis. Intensive Care Med. 2017;43(2):155–70. https://doi.org/10.1007/s00134-016-4573-3.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pasquale Nardelli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nardelli, P., Senarighi, G., Votta, C.D. (2021). Goal-Directed Therapy. In: Landoni, G., Baiardo Redaelli, M., Sartini, C., Zangrillo, A., Bellomo, R. (eds) Reducing Mortality in Critically Ill Patients. Springer, Cham. https://doi.org/10.1007/978-3-030-71917-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-71917-3_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-71916-6

  • Online ISBN: 978-3-030-71917-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics