Skip to main content

Patient-Specific Reference Model for Planning Orthognathic Surgery

  • Chapter
  • First Online:
Machine Learning in Dentistry

Abstract

A large number of people require surgical or orthodontic treatment to correct jaw deformities. The accuracy of surgical planning is essential to the success of craniomaxillofacial (CMF) surgery. An accurate surgical plan greatly relies on a patient-specific reference model. The current challenge is a lack of this reference model. As a result, the outcome of surgery is currently dependent on the surgeon’s diagnoses and experience. This chapter introduces a method to automatically estimate an anatomically correct reference shape of the jaws for the patient requiring orthognathic surgery. The method is based on sparse shape composition and is data-driven. It can effectively estimate the normal shape of the maxilla and mandible.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Please Note: Unless otherwise specified, in the following text, the term “jaws” represents both upper (or maxillary) and lower (or mandibular) jaws.

References

  1. Lew TA, Walker JA, Wenke JC, Blackbourne LH, Hale RG. Characterization of craniomaxillofacial battle injuries sustained by United States service members in the current conflicts of Iraq and Afghanistan. J Oral Maxillofac Surg. 2010;68(1):3–7. https://doi.org/10.1016/j.joms.2009.06.006.

    Article  PubMed  Google Scholar 

  2. Xia JJ, Gateno J, Teichgraeber JF. New clinical protocol to evaluate craniomaxillofacial deformity and plan surgical correction. J Oral Maxillofac Surg. 2009;67(10):2093–106. https://doi.org/10.1016/j.joms.2009.04.057.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Gateno J, Xia JJ, Teichgraeber JF, Christensen AM, Lemoine JJ, Liebschner MA, Gliddon MJ, Briggs ME. Clinical feasibility of computer-aided surgical simulation (CASS) in the treatment of complex cranio-maxillofacial deformities. J Oral Maxillofac Surg. 2007;65(4):728–34. https://doi.org/10.1016/j.joms.2006.04.001.

    Article  PubMed  Google Scholar 

  4. Swennen GR, Barth EL, Eulzer C, Schutyser F. The use of a new 3D splint and double CT scan procedure to obtain an accurate anatomic virtual augmented model of the skull. Int J Oral Maxillofac Surg. 2007;36(2):146–52. https://doi.org/10.1016/j.ijom.2006.09.019.

    Article  PubMed  Google Scholar 

  5. Swennen GR, Mommaerts MY, Abeloos J, De Clercq C, Lamoral P, Neyt N, Casselman J, Schutyser F. The use of a wax bite wafer and a double computed tomography scan procedure to obtain a three-dimensional augmented virtual skull model. J Craniofac Surg. 2007;18(3):533–9. https://doi.org/10.1097/scs.0b013e31805343df.

    Article  PubMed  Google Scholar 

  6. Xia J, Ip HH, Samman N, Wang D, Kot CS, Yeung RW, Tideman H. Computer-assisted three-dimensional surgical planning and simulation: 3D virtual osteotomy. Int J Oral Maxillofac Surg. 2000;29(1):11–7.

    Article  Google Scholar 

  7. Zhang S, Zhan Y, Dewan M, Huang J, Metaxas DN, Zhou XS. Towards robust and effective shape modeling: sparse shape composition. Med Image Anal. 2012;16(1):265–77. https://doi.org/10.1016/j.media.2011.08.004.

    Article  PubMed  Google Scholar 

  8. Wang G, Zhang S, Li F, Gu L. A new segmentation framework based on sparse shape composition in liver surgery planning system. Med Phys. 2013;40(5):051913. https://doi.org/10.1118/1.4802215.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Zhang S, Zhan Y, Metaxas DN. Deformable segmentation via sparse representation and dictionary learning. Med Image Anal. 2012;16(7):1385–96. https://doi.org/10.1016/j.media.2012.07.007.

    Article  PubMed  Google Scholar 

  10. Donoho D. For most large underdetermined systems of linear equations the minimal L1-norm solution is also the sparsest solution. Commun Pure Appl Math. 2006;59:797–829.

    Article  Google Scholar 

  11. Vannier MW, Marsh JL, Warren JO. Three dimensional CT reconstruction images for craniofacial surgical planning and evaluation. Radiology. 1984;150(1):179–84. https://doi.org/10.1148/radiology.150.1.6689758.

    Article  PubMed  Google Scholar 

  12. Xia JJ, Gateno J, Teichgraeber JF. Three-dimensional computer-aided surgical simulation for maxillofacial surgery. Atlas Oral Maxillofac Surg Clin North Am. 2005;13(1):25–39. https://doi.org/10.1016/j.cxom.2004.10.004.

    Article  PubMed  Google Scholar 

  13. Zachow S, Lamecker H, Elsholtz B, Stiller M. Reconstruction of mandibular dysplasia using a statistical 3D shape model. Int Congr Ser. 2005;1281 https://doi.org/10.1016/j.ics.2005.03.339.

  14. Zhu Y, Papademetris X, Sinusas AJ, Duncan JS. Segmentation of the left ventricle from cardiac MR images using a subject-specific dynamical model. IEEE Trans Med Imaging. 2010;29(3):669–87. https://doi.org/10.1109/TMI.2009.2031063.

    Article  PubMed  Google Scholar 

  15. Zhang W, Yan P, Li X. Estimating patient-specific shape prior for medical image segmentation. In: 2011 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, 30 March–2 April 2011, 2011. pp 1451–1454. https://doi.org/10.1109/ISBI.2011.5872673

  16. Xia JJ, McGrory JK, Gateno J, Teichgraeber JF, Dawson BC, Kennedy KA, Lasky RE, English JD, Kau CH, McGrory KR. A new method to orient 3-dimensional computed tomography models to the natural head position: a clinical feasibility study. J Oral Maxillofac Surg. 2011;69(3):584–91. https://doi.org/10.1016/j.joms.2010.10.034.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Starck JL, Elad M, Donoho DL. Image decomposition via the combination of sparse representations and a variational approach. IEEE Trans Image Process. 2005;14(10):1570–82. https://doi.org/10.1109/tip.2005.852206.

    Article  PubMed  Google Scholar 

  18. Tibshirani R. Regression Shrinkage and selection via the Lasso. J R Stat Soc Ser B (Methodol). 1996;58(1):267–88.

    Google Scholar 

  19. Lapeer RJ, Prager RW. 3D shape recovery of a newborn skull using thin-plate splines. Comput Med Imaging Graph. 2000;24(3):193–204. https://doi.org/10.1016/s0895-6111(00)00019-7.

    Article  PubMed  Google Scholar 

  20. Xue Z, Shen D, Davatzikos C. Statistical representation of high-dimensional deformation fields with application to statistically constrained 3D warping. Med Image Anal. 2006;10(5):740–51. https://doi.org/10.1016/j.media.2006.06.007.

    Article  PubMed  Google Scholar 

  21. Wright J, Yang AY, Ganesh A, Sastry SS, Ma Y. Robust face recognition via sparse representation. IEEE Trans Pattern Anal Mach Intell. 2009;31(2):210–27. https://doi.org/10.1109/TPAMI.2008.79.

    Article  PubMed  Google Scholar 

  22. Yan J, Shen G-f, Fang B, Shi H-m, Wu Y, Shao Z-y, Xia B-q, Yu D-d. Three-dimensional CT measurement for the craniomaxillofacial structure of normal occlusion adults in Jiangsu, Zhejiang and Shanghai Area. China J Oral Maxillof Surg. 2010.

    Google Scholar 

  23. Wang L, Chen KC, Gao Y, Shi F, Liao S, Li G, Shen SG, Yan J, Lee PK, Chow B, Liu NX, Xia JJ, Shen D. Automated bone segmentation from dental CBCT images using patch-based sparse representation and convex optimization. Med Phys. 2014;41(4):043503. https://doi.org/10.1118/1.4868455.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Mairal J, Bach F, Ponce J. Task-driven dictionary learning. IEEE Trans Pattern Anal Mach Intell. 2012;34(4):791–804. https://doi.org/10.1109/TPAMI.2011.156.

    Article  PubMed  Google Scholar 

  25. Gateno J, Jones TL, Shen SGF, Chen KC, Jajoo A, Kuang T, English JD, Nicol M, Teichgraeber JF, Xia JJ. Fluctuating asymmetry of the normal facial skeleton. Int J Oral Maxillofac Surg. 2018;47(4):534–40. https://doi.org/10.1016/j.ijom.2017.10.011.

    Article  PubMed  Google Scholar 

  26. Wu G, Jia H, Wang Q, Shen D. SharpMean: groupwise registration guided by sharp mean image and tree-based registration. NeuroImage. 2011;56(4):1968–81. https://doi.org/10.1016/j.neuroimage.2011.03.050.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by National Institutes of Health/National Institute of Dental and Craniofacial Research grants DE022676, DE021863 and DE027251. Dr. Chen was sponsored by the Taiwan Ministry of Education, and Dr. Tang was sponsored by the China Scholarship Council while they were working at the Surgical Planning Laboratory, Department of Oral and Maxillofacial Surgery, Houston Methodist Research Institute, Houston, TX, USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James J. Xia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Deng, H.H. et al. (2021). Patient-Specific Reference Model for Planning Orthognathic Surgery. In: Ko, CC., Shen, D., Wang, L. (eds) Machine Learning in Dentistry. Springer, Cham. https://doi.org/10.1007/978-3-030-71881-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-71881-7_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-71880-0

  • Online ISBN: 978-3-030-71881-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics