Skip to main content

Machine (Deep) Learning and Finite Element Modeling

  • Chapter
  • First Online:
Machine Learning in Dentistry
  • 1160 Accesses

Abstract

Finite element analysis (FEA) has been widely used to predict the biomechanical performance of various dental applications such as orthodontic tooth movement, implant components, and peri-implant bone. We begin with a brief introduction of the traditional FEA process and disadvantages of using FEA in clinical applications. Then, we review existing studies in which researchers use machine learning (ML) to address these disadvantages. Finally, we conclude that the combination of the FEA and ML is the best solution given that ML can facilitate the FEA computation, and FEA results can also enhance the accuracy of ML prediction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Trivedi S. Finite element analysis: a boon to dentistry. J Oral Biol Craniofacial Res. 2014;4:200–3. https://doi.org/10.1016/j.jobcr.2014.11.008.

    Article  Google Scholar 

  2. Uhlir R, Mayo V, Lin PH, et al. Biomechanical characterization of the periodontal ligament: orthodontic tooth movement. Angle Orthod. 2016;87:183–92. https://doi.org/10.2319/092615-651.1.

    Article  PubMed  Google Scholar 

  3. Liang L, Kong F, Martin C, et al. Machine learning–based 3-D geometry reconstruction and modeling of aortic valve deformation using 3-D computed tomography images. Int J Numer Method Biomed Eng. 2017;33:e2827. https://doi.org/10.1002/cnm.2827.

    Article  Google Scholar 

  4. Liang L, Liu M, Martin C, et al. A machine learning approach to investigate the relationship between shape features and numerically predicted risk of ascending aortic aneurysm. Biomech Model Mechanobiol. 2017;16:1519–33. https://doi.org/10.1007/s10237-017-0903-9.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Martin C, Sun W, Pham T, Elefteriades J. Predictive biomechanical analysis of ascending aortic aneurysm rupture potential. Acta Biomater. 2013;9:9392–400. https://doi.org/10.1016/j.actbio.2013.07.044.

    Article  PubMed  Google Scholar 

  6. Weisbecker H, Pierce DM, Holzapfel GA. A generalized prestressing algorithm for finite element simulations of preloaded geometries with application to the aorta. Int J Numer Method Biomed Eng. 2014;30:857–72. https://doi.org/10.1002/cnm.2632.

    Article  PubMed  Google Scholar 

  7. Raghavan ML, Ma B, Fillinger MF. Non-invasive determination of zero-pressure geometry of arterial aneurysms. Ann Biomed Eng. 2006;34:1414–9. https://doi.org/10.1007/s10439-006-9115-7.

    Article  PubMed  Google Scholar 

  8. Lu J, Zhou X, Raghavan ML. Computational method of inverse elastostatics for anisotropic hyperelastic solids. Int J Numer Methods Eng. 2007;69:1239–61. https://doi.org/10.1002/nme.1807.

    Article  Google Scholar 

  9. Gee MW, Förster C, Wall WA. A computational strategy for prestressing patient-specific biomechanical problems under finite deformation. Int J Numer Method Biomed Eng. 2010;26:52–72. https://doi.org/10.1002/cnm.1236.

    Article  Google Scholar 

  10. Martin C, Sun W, Elefteriades J. Patient-specific finite element analysis of ascending aorta aneurysms. Am J Physiol Circ Physiol. 2015;308:H1306–16. https://doi.org/10.1152/ajpheart.00908.2014.

    Article  Google Scholar 

  11. Chang C-C, Lin C-J. LIBSVM: a library for support vector machines. ACM Trans Intell Syst Technol. 2011;2:27.

    Article  Google Scholar 

  12. Cortes C, Vapnik V. Support-vector networks. Mach Learn. 1995;20:273–97. https://doi.org/10.1007/BF00994018.

    Article  Google Scholar 

  13. Liang L, Liu M, Martin C, Sun W. A deep learning approach to estimate stress distribution: a fast and accurate surrogate of finite-element analysis. J R Soc Interface. 2018;15:20170844. https://doi.org/10.1098/rsif.2017.0844.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Nishiyama KK, Ito M, Harada A, Boyd SK. Classification of women with and without hip fracture based on quantitative computed tomography and finite element analysis. Osteoporos Int. 2014;25:619–26. https://doi.org/10.1007/s00198-013-2459-6.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ching-Chang Ko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lee, YT., Wu, TH., Lin, ML., Ko, CC. (2021). Machine (Deep) Learning and Finite Element Modeling. In: Ko, CC., Shen, D., Wang, L. (eds) Machine Learning in Dentistry. Springer, Cham. https://doi.org/10.1007/978-3-030-71881-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-71881-7_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-71880-0

  • Online ISBN: 978-3-030-71881-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics