McCulloch WS, Pitts W. A logical calculus of the ideas immanent in nervous activity. Bull Math Biophys. 1943;5(4):115–33.
CrossRef
Google Scholar
Park WJ, Park J-B. History and application of artificial neural networks in dentistry. Eur J Dent. 2018;12(04):594–601.
PubMed
PubMed Central
CrossRef
Google Scholar
Lin E, Lane H-Y. Machine learning and systems genomics approaches for multi-omics data. Biomarker Res. 2017;5(1):2.
CrossRef
Google Scholar
Krizhevsky A, Sutskever I, Hinton GE. Imagenet classification with deep convolutional neural networks. Adv Neural Informn Proc Syst. 2012;25:1097–105.
Google Scholar
Hung M, Voss MW, Rosales MN, Li W, Su W, Xu J, et al. Application of machine learning for diagnostic prediction of root caries. Gerodontology. 2019;36(4):395–404.
PubMed
PubMed Central
CrossRef
Google Scholar
Liu Z, Liu J, Zhou Z, Zhang Q, Wu H, Zhai G, et al. Differential diagnosis of ameloblastoma and odontogenic keratocyst by machine learning of panoramic radiographs. Int J Comput Assist Radiol Surg. 2021;16(3):415–22
PubMed
PubMed Central
CrossRef
Google Scholar
Abdalla-Aslan R, Yeshua T, Kabla D, Leichter I, Nadler C. An artificial intelligence system using machine-learning for automatic detection and classification of dental restorations in panoramic radiography. Oral Surg Oral Med Oral Pathol Oral Radiol. 2020;130(5):593–602.
PubMed
CrossRef
Google Scholar
Xie X, Wang L, Wang A. Artificial neural network modeling for deciding if extractions are necessary prior to orthodontic treatment. Angle Orthod. 2010;80(2):262–6.
PubMed
CrossRef
PubMed Central
Google Scholar
Montenegro RD, Oliveira AL, Cabral GG, Katz CR, Rosenblatt A. A comparative study of machine learning techniques for caries prediction. In: 2008 20th IEEE International Conference on tools with artificial intelligence. Piscataway, NJ: IEEE; 2008. p. 477–81.
CrossRef
Google Scholar
Patil S, Habib Awan K, Arakeri G, Jayampath Seneviratne C, Muddur N, Malik S, et al. Machine learning and its potential applications to the genomic study of head and neck cancer—a systematic review. J Oral Pathol Med. 2019;48(9):773–9.
PubMed
CrossRef
Google Scholar
Kebschull M, Papapanou PN. Exploring genome-wide expression profiles using machine learning techniques. Methods Oral Biol. 2017;1537:347–64. Springer
CrossRef
Google Scholar
Ritchie MD, Holzinger ER, Li R, Pendergrass SA, Kim D. Methods of integrating data to uncover genotype–phenotype interactions. Nat Rev Genet. 2015;16(2):85–97.
PubMed
CrossRef
Google Scholar
Misra BB, Langefeld C, Olivier M, Cox LA. Integrated omics: tools, advances and future approaches. J Mol Endocrinol. 2019;62(1):R21–45.
CrossRef
Google Scholar
Fröhlich H, Patjoshi S, Yeghiazaryan K, Kehrer C, Kuhn W, Golubnitschaja O. Premenopausal breast cancer: potential clinical utility of a multi-omics based machine learning approach for patient stratification. EPMA J. 2018;9(2):175–86.
PubMed
PubMed Central
CrossRef
Google Scholar
Divaris K. Fundamentals of precision medicine. Compend Contin Educ Dent. 2017;38(8 Suppl):30–2.
PubMed
PubMed Central
Google Scholar
Selwitz RH, Ismail AI, Pitts NB. Dental caries. Lancet. 2007;369(9555):51–9. https://doi.org/10.1016/S0140-6736(07)60031-2.
CrossRef
PubMed
Google Scholar
Divaris K. Predicting dental caries outcomes in children: a “risky” concept. J Dent Res. 2016;95(3):248–54. https://doi.org/10.1177/0022034515620779.
CrossRef
PubMed
Google Scholar
Burne RA, Zeng L, Ahn SJ, Palmer SR, Liu Y, Lefebure T, et al. Progress dissecting the oral microbiome in caries and health. Adv Dent Res. 2012;24(2):77–80. https://doi.org/10.1177/0022034512449462.
CrossRef
PubMed
PubMed Central
Google Scholar
Marsh PD. Microbial ecology of dental plaque and its significance in health and disease. Adv Dent Res. 1994;8(2):263–71. https://doi.org/10.1177/08959374940080022001.
CrossRef
PubMed
Google Scholar
Nyvad B, Crielaard W, Mira A, Takahashi N, Beighton D. Dental caries from a molecular microbiological perspective. Caries Res. 2013;47(2):89–102. https://doi.org/10.1159/000345367.
CrossRef
PubMed
Google Scholar
Falsetta ML, Klein MI, Colonne PM, Scott-Anne K, Gregoire S, Pai CH, et al. Symbiotic relationship between Streptococcus mutants and Candida albicans synergizes virulence of plaque biofilms in vivo. Infect Immun. 2014;82(5):1968–81. https://doi.org/10.1128/IAI.00087-14.
CrossRef
PubMed
PubMed Central
Google Scholar
Delisle AL, Guo M, Chalmers NI, Barcak GJ, Rousseau GM, Moineau S. Biology and genome sequence of Streptococcus mutans phage M102AD. Appl Environ Microbiol. 2012;78(7):2264–71. https://doi.org/10.1128/AEM.07726-11.
CrossRef
PubMed
PubMed Central
Google Scholar
Divaris K, Joshi A. The building blocks of precision oral health in early childhood: the ZOE 2.0 study. J Public Health Dent. 2018;80(Suppl 1):S31–6. https://doi.org/10.1111/jphd.12303.
CrossRef
PubMed
Google Scholar
Ginnis J, Ferreira Zandona AG, Slade GD, Cantrell J, Antonio ME, Pahel BT, et al. Measurement of early childhood Oral health for research purposes: dental caries experience and developmental defects of the enamel in the primary dentition. Methods Mol Biol. 1922;2019:511–23. https://doi.org/10.1007/978-1-4939-9012-2_39.
CrossRef
Google Scholar
Divaris K, Shungin D, Rodriguez-Cortes A, Basta PV, Roach J, Cho H, et al. The Supragingival biofilm in early childhood caries: clinical and laboratory protocols and bioinformatics pipelines supporting metagenomics, Metatranscriptomics, and metabolomics studies of the Oral microbiome. Methods Mol Biol. 1922;2019:525–48. https://doi.org/10.1007/978-1-4939-9012-2_40.
CrossRef
Google Scholar
Haworth S, Esberg A, Lif Holgerson P, Kuja-Halkola R, Timpson NJ, Magnusson PKE, et al. Heritability of caries scores, trajectories, and disease subtypes. J Dent Res. 2020;99(3):264–70. https://doi.org/10.1177/0022034519897910.
CrossRef
PubMed
Google Scholar
Shaffer JR, Feingold E, Wang X, Tcuenco KT, Weeks DE, DeSensi RS, et al. Heritable patterns of tooth decay in the permanent dentition: principal components and factor analyses. BMC Oral Health. 2012;12:7. https://doi.org/10.1186/1472-6831-12-7.
CrossRef
PubMed
PubMed Central
Google Scholar
GlobalSurg C. Writing g, patient r, statistical a, protocol d, project s, et al. global variation in anastomosis and end colostomy formation following left-sided colorectal resection. BJS Open. 2019;3(3):403–14. https://doi.org/10.1002/bjs5.50138.
CrossRef
Google Scholar
Divaris K. Searching deep and wide: advances in the molecular understanding of dental caries and periodontal disease. Adv Dent Res. 2019;30(2):40–4. https://doi.org/10.1177/0022034519877387.
CrossRef
PubMed
PubMed Central
Google Scholar
Wood DE, Salzberg SL. Kraken: ultrafast metagenomic sequence classification using exact alignments. Genome Biol. 2014;15(3):R46. https://doi.org/10.1186/gb-2014-15-3-r46.
CrossRef
PubMed
PubMed Central
Google Scholar
Huson DH, Auch AF, Qi J, Schuster SC. MEGAN analysis of metagenomic data. Genome Res. 2007;17(3):377–86. https://doi.org/10.1101/gr.5969107.
CrossRef
PubMed
PubMed Central
Google Scholar
Brady A, Salzberg S. PhymmBL expanded: confidence scores, custom databases, parallelization and more. Nat Methods. 2011;8(5):367. https://doi.org/10.1038/nmeth0511-367.
CrossRef
PubMed
PubMed Central
Google Scholar
Craig J. Complex diseases: research and applications. Nature Education. 2008;1(1):184.
Google Scholar
The Human Genome Project. https://www.genome.gov/human-genome-project. 2018; Accessed 2020.
The International HapMap Consortium. The international HapMap project. Nature. 2003;426(6968):789–96.
CrossRef
Google Scholar
The International HapMap Consortium. A haplotype map of the human genome. Nature. 2005;437:1299–320.
PubMed Central
CrossRef
Google Scholar
The International HapMap Consortium. A second generation human haplotype map of over 3.1 million SNPs. Nature. 2007;449:851–61.
PubMed Central
CrossRef
Google Scholar
The International HapMap Consortium. Integrating common and rare genetic variation in diverse human populations. Nature. 2010;467(7311):52–8. https://doi.org/10.1038/nature09298.
CrossRef
Google Scholar
The 1000 Genomes Project Consortium. A map of human genome variation from population-scale sequencing. Nature. 2010;467(7319):1061–73. http://www.nature.com/nature/journal/v467/n7319/abs/nature09534.html#supplementary-information
PubMed Central
CrossRef
Google Scholar
Abecasis GR, Auton A, Brooks LD, DePristo MA, Durbin RM, Handsaker RE, et al. An integrated map of genetic variation from 1,092 human genomes. Nature. 2012;491(7422):56–65. https://doi.org/10.1038/nature11632.
CrossRef
PubMed
Google Scholar
The 1000 Genomes Project Consortium. A global reference for human genetic variation. Nature. 2015;526(7571):68–74. https://doi.org/10.1038/nature15393.
CrossRef
Google Scholar
MacArthur J, Bowler E, Cerezo M, Gil L, Hall P, Hastings E, et al. The new NHGRI-EBI catalog of published genome-wide association studies (GWAS catalog). Nucleic Acids Res. 2017;45(D1):D896–d901. https://doi.org/10.1093/nar/gkw1133.
CrossRef
PubMed
Google Scholar
Zhang Y, Liu JS. Bayesian inference of epistatic interactions in case-control studies. Nat Genet. 2007;39(9):1167–73.
PubMed
CrossRef
Google Scholar
Han B, Chen X-W, Talebizadeh Z. FEPI-MB: identifying SNPs-disease association using a Markov Blanket-based approach. BMC Bioinform. 2011;12(Suppl 12):S3.
CrossRef
Google Scholar
Uppu S, Krishna A, Gopalan RP. A review on methods for detecting SNP interactions in high-dimensional genomic data. IEEE/ACM Trans Comput Biol Bioinform. 2016;15(2):599–612.
PubMed
CrossRef
Google Scholar
Jiang R, Tang W, Wu X, Fu W. A random forest approach to the detection of epistatic interactions in case-control studies. BMC Bioinform. 2009;10(1):S65.
CrossRef
Google Scholar
De Lobel L, Geurts P, Baele G, Castro-Giner F, Kogevinas M, Van Steen K. A screening methodology based on random forests to improve the detection of gene–gene interactions. Eur J Hum Genet. 2010;18(10):1127–32.
PubMed
PubMed Central
CrossRef
Google Scholar
Yoshida M, Koike A. SNPInterForest: a new method for detecting epistatic interactions. BMC Bioinform. 2011;12(1):469.
CrossRef
Google Scholar
Schwarz DF, König IR, Ziegler A. On safari to random jungle: a fast implementation of random forests for high-dimensional data. Bioinformatics. 2010;26(14):1752–8.
PubMed
PubMed Central
CrossRef
Google Scholar
Wu Q, Ye Y, Liu Y, Ng MK. SNP selection and classification of genome-wide SNP data using stratified sampling random forests. IEEE Trans Nanobioscience. 2012;11(3):216–27.
PubMed
CrossRef
Google Scholar
Lin HY, Ann Chen Y, Tsai YY, Qu X, Tseng TS, Park JY. TRM: a powerful two-stage machine learning approach for identifying SNP-SNP interactions. Ann Hum Genet. 2012;76(1):53–62.
PubMed
CrossRef
Google Scholar
Pan Q, Hu T, Malley JD, Andrew AS, Karagas MR, Moore JH. Supervising random forest using attribute interaction networks. European conference on evolutionary computation, machine learning and data mining in bioinformatics. Berlin: Springer; 2013. p. 104–16.
Google Scholar
Chen SH, Sun J, Dimitrov L, Turner AR, Adams TS, Meyers DA, et al. A support vector machine approach for detecting gene-gene interaction. Genetic Epidemiology: The Official Publication of the International Genetic Epidemiology Society. 2008;32(2):152–67.
CrossRef
Google Scholar
Özgür A, Vu T, Erkan G, Radev DR. Identifying gene-disease associations using centrality on a literature mined gene-interaction network. Bioinformatics. 2008;24(13):i277–i85.
PubMed
PubMed Central
CrossRef
Google Scholar
Shen Y, Liu Z, Ott J. Support vector machines with L 1 penalty for detecting gene-gene interactions. Int J Data Min Bioinform. 2012;6(5):463–70.
PubMed
CrossRef
Google Scholar
Fang YH, Chiu YF. SVM-based generalized multifactor dimensionality reduction approaches for detecting gene-gene interactions in family studies. Genet Epidemiol. 2012;36(2):88–98.
PubMed
CrossRef
Google Scholar
Marvel S, Motsinger-Reif A. Grammatical evolution support vector machines for predicting human genetic disease association. Proceedings of the 14th annual conference companion on Genetic and evolutionary computation 2012. p. 595–8.
Google Scholar
Zhang H, Wang H, Dai Z, Chen M-S, Yuan Z. Improving accuracy for cancer classification with a new algorithm for genes selection. BMC Bioinform. 2012;13(1):298.
CrossRef
Google Scholar
Lin Y, Jeon Y. Random forests and adaptive nearest neighbors. J Am Stat Assoc. 2006;101(474):578–90. https://doi.org/10.1198/016214505000001230.
CrossRef
Google Scholar
Koo CL, Liew MJ, Mohamad MS, Salleh M, Hakim A. A review for detecting gene-gene interactions using machine learning methods in genetic epidemiology. Biomed Res Int. 2013;2013:432375.
PubMed
PubMed Central
CrossRef
Google Scholar
Roller E, Ivakhno S, Lee S, Royce T, Tanner S. Canvas: versatile and scalable detection of copy number variants. Bioinformatics. 2016;32(15):2375–7.
PubMed
CrossRef
Google Scholar
Ivakhno S, Roller E, Colombo C, Tedder P, Cox AJ. Canvas SPW: calling de novo copy number variants in pedigrees. Bioinformatics. 2018;34(3):516–8.
PubMed
CrossRef
Google Scholar
Wang Z, Hormozdiari F, Yang W-Y, Halperin E, Eskin E. CNVeM: copy number variation detection using uncertainty of read mapping. J Comput Biol. 2013;20(3):224–36.
PubMed
PubMed Central
CrossRef
Google Scholar
Nguyen HT, Merriman TR, Black MA. The CNVrd2 package: measurement of copy number at complex loci using high-throughput sequencing data. Front Genet. 2014;5:248.
PubMed
PubMed Central
CrossRef
Google Scholar
Miller CA, Hampton O, Coarfa C, Milosavljevic A. ReadDepth: a parallel R package for detecting copy number alterations from short sequencing reads. PLoS One. 2011;6(1):e16327.
PubMed
PubMed Central
CrossRef
Google Scholar
Aure MR, Vitelli V, Jernström S, Kumar S, Krohn M, Due EU, et al. Integrative clustering reveals a novel split in the luminal a subtype of breast cancer with impact on outcome. Breast Cancer Res. 2017;19(1):44. https://doi.org/10.1186/s13058-017-0812-y.
CrossRef
PubMed
PubMed Central
Google Scholar
Karim MR, Rahman A, Jares JB, Decker S, Beyan O. A snapshot neural ensemble method for cancer-type prediction based on copy number variations. Neural Comput & Applic. 2019:1–19.
Google Scholar
AlShibli A, Mathkour H. A shallow convolutional learning network for classification of cancers based on copy number variations. Sensors. 2019;19(19):4207.
PubMed Central
CrossRef
Google Scholar
Fortin J-P, Triche TJ Jr, Hansen KD. Preprocessing, normalization and integration of the Illumina HumanMethylationEPIC array with minfi. Bioinformatics. 2017;33(4):558–60.
PubMed
Google Scholar
Robertson KD. DNA methylation and human disease. Nat Rev Genet. 2005;6(8):597–610.
PubMed
CrossRef
Google Scholar
Jiang Y, Oldridge DA, Diskin SJ, Zhang NR. CODEX: a normalization and copy number variation detection method for whole exome sequencing. Nucleic Acids Res. 2015;43(6):e39-e.
CrossRef
Google Scholar
Wang K, Li M, Hadley D, Liu R, Glessner J, Grant SF, et al. PennCNV: an integrated hidden Markov model designed for high-resolution copy number variation detection in whole-genome SNP genotyping data. Genome Res. 2007;17(11):1665–74.
PubMed
PubMed Central
CrossRef
Google Scholar
Colella S, Yau C, Taylor JM, Mirza G, Butler H, Clouston P, et al. QuantiSNP: an objective Bayes hidden-Markov model to detect and accurately map copy number variation using SNP genotyping data. Nucleic Acids Res. 2007;35(6):2013–25.
PubMed
PubMed Central
CrossRef
Google Scholar
Zhang Z, Cheng H, Hong X, Di Narzo AF, Franzen O, Peng S, et al. EnsembleCNV: an ensemble machine learning algorithm to identify and genotype copy number variation using SNP array data. Nucleic Acids Res. 2019;47(7):e39-e.
CrossRef
Google Scholar
Pounraja VK, Jayakar G, Jensen M, Kelkar N, Girirajan S. A machine-learning approach for accurate detection of copy number variants from exome sequencing. Genome Res. 2019;29(7):1134–43.
PubMed
PubMed Central
CrossRef
Google Scholar
Poplin R, Chang P-C, Alexander D, Schwartz S, Colthurst T, Ku A, et al. A universal SNP and small-indel variant caller using deep neural networks. Nat Biotechnol. 2018;36(10):983–7.
PubMed
CrossRef
Google Scholar
Hill T, Unckless RL. A deep learning approach for detecting copy number variation in next-generation sequencing data. G3: Genes, Genomes, Genetics. 2019;9(11):3575–82.
CrossRef
Google Scholar
Zhang Y, Jin L, Wang B, Hu D, Wang L, Li P, et al. DL-CNV: a deep learning method for identifying copy number variations based on next generation target sequencing. Math Biosci Eng: MBE. 2019;17(1):202–15.
PubMed
CrossRef
Google Scholar
Jiang Y, Qiu Y, Minn AJ, Zhang NR. Assessing intratumor heterogeneity and tracking longitudinal and spatial clonal evolutionary history by next-generation sequencing. Proc Natl Acad Sci. 2016;113(37):E5528–E37.
PubMed
PubMed Central
CrossRef
Google Scholar
Liu J, Halloran JT, Bilmes JA, Daza RM, Lee C, Mahen EM, et al. Comprehensive statistical inference of the clonal structure of cancer from multiple biopsies. Sci Rep. 2017;7(1):1–13.
CrossRef
Google Scholar
Holder LB, Haque MM, Skinner MK. Machine learning for epigenetics and future medical applications. Epigenetics. 2017;12(7):505–14.
PubMed
PubMed Central
CrossRef
Google Scholar
Ni P, Huang N, Zhang Z, Wang D-P, Liang F, Miao Y, et al. DeepSignal: detecting DNA methylation state from Nanopore sequencing reads using deep-learning. Bioinformatics. 2019;35(22):4586–95.
PubMed
CrossRef
Google Scholar
Angermueller C, Lee HJ, Reik W, Stegle O. DeepCpG: accurate prediction of single-cell DNA methylation states using deep learning. Genome Biol. 2017;18(1):67.
PubMed
PubMed Central
CrossRef
Google Scholar
Zhang W, Spector TD, Deloukas P, Bell JT, Engelhardt BE. Predicting genome-wide DNA methylation using methylation marks, genomic position, and DNA regulatory elements. Genome Biol. 2015;16(1):14.
PubMed
PubMed Central
CrossRef
Google Scholar
Zhang G, Huang KC, Xu Z, Tzeng JY, Conneely KN, Guan W, et al. Across-platform imputation of DNA methylation levels incorporating nonlocal information using penalized functional regression. Genet Epidemiol. 2016;40(4):333–40. https://doi.org/10.1002/gepi.21969.
CrossRef
PubMed
PubMed Central
Google Scholar
Zeng H, Gifford DK. Predicting the impact of non-coding variants on DNA methylation. Nucleic Acids Res. 2017;45(11):e99-e.
CrossRef
Google Scholar
Capper D, Jones DT, Sill M, Hovestadt V, Schrimpf D, Sturm D, et al. DNA methylation-based classification of central nervous system tumours. Nature. 2018;555(7697):469–74.
PubMed
PubMed Central
CrossRef
Google Scholar
Cai Z, Xu D, Zhang Q, Zhang J, Ngai S-M, Shao J. Classification of lung cancer using ensemble-based feature selection and machine learning methods. Mol BioSyst. 2015;11(3):791–800.
PubMed
CrossRef
Google Scholar
Wei SH, Balch C, Paik HH, Kim Y-S, Baldwin RL, Liyanarachchi S, et al. Prognostic DNA methylation biomarkers in ovarian cancer. Clin Cancer Res. 2006;12(9):2788–94.
PubMed
CrossRef
Google Scholar
Aran D, Sabato S, Hellman A. DNA methylation of distal regulatory sites characterizes dysregulation of cancer genes. Genome Biol. 2013;14(3):R21.
PubMed
PubMed Central
CrossRef
Google Scholar
Forcato M, Nicoletti C, Pal K, Livi CM, Ferrari F, Bicciato S. Comparison of computational methods for Hi-C data analysis. Nat Methods. 2017;14(7):679–85. https://doi.org/10.1038/nmeth.4325.
CrossRef
PubMed
PubMed Central
Google Scholar
Rao SS, Huntley MH, Durand NC, Stamenova EK, Bochkov ID, Robinson JT, et al. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell. 2014;159(7):1665–80.
PubMed
PubMed Central
CrossRef
Google Scholar
Bonev B, Mendelson Cohen N, Szabo Q, Fritsch L, Papadopoulos GL, Lubling Y, et al. Multiscale 3D genome rewiring during mouse neural development. Cell. 2017;171(3):557–72.e24. https://doi.org/10.1016/j.cell.2017.09.043.
CrossRef
PubMed
PubMed Central
Google Scholar
Jin F, Li Y, Dixon JR, Selvaraj S, Ye Z, Lee AY, et al. A high-resolution map of the three-dimensional chromatin interactome in human cells. Nature. 2013;503(7475):290–4. https://doi.org/10.1038/nature12644.
CrossRef
PubMed
PubMed Central
Google Scholar
Zhang Y, An L, Xu J, Zhang B, Zheng WJ, Hu M, et al. Enhancing Hi-C data resolution with deep convolutional neural network HiCPlus. Nat Commun. 2018;9(1):750. https://doi.org/10.1038/s41467-018-03113-2.
CrossRef
PubMed
PubMed Central
Google Scholar
Liu T, Wang Z. HiCNN: a very deep convolutional neural network to better enhance the resolution of Hi-C data. Bioinformatics. 2019;35(21):4222–8. https://doi.org/10.1093/bioinformatics/btz251.
CrossRef
PubMed
PubMed Central
Google Scholar
Liu Q, Lv H, Jiang R. hicGAN infers super resolution Hi-C data with generative adversarial networks. Bioinformatics. 2019;35(14):i99–i107. https://doi.org/10.1093/bioinformatics/btz317.
CrossRef
PubMed
PubMed Central
Google Scholar
Lajoie BR, Dekker J, Kaplan N. The Hitchhiker’s guide to Hi-C analysis: practical guidelines. Methods. 2015;72:65–75. https://doi.org/10.1016/j.ymeth.2014.10.031.
CrossRef
PubMed
Google Scholar
Yaffe E, Tanay A. Probabilistic modeling of Hi-C contact maps eliminates systematic biases to characterize global chromosomal architecture. Nat Genet. 2011;43(11):1059–65. https://doi.org/10.1038/ng.947.
CrossRef
PubMed
Google Scholar
Hu M, Deng K, Selvaraj S, Qin Z, Ren B, Liu JS. HiCNorm: removing biases in Hi-C data via Poisson regression. Bioinformatics. 2012;28(23):3131–3. https://doi.org/10.1093/bioinformatics/bts570.
CrossRef
PubMed
PubMed Central
Google Scholar
Imakaev M, Fudenberg G, McCord RP, Naumova N, Goloborodko A, Lajoie BR, et al. Iterative correction of Hi-C data reveals hallmarks of chromosome organization. Nat Methods. 2012;9(10):999–1003. https://doi.org/10.1038/nmeth.2148.
CrossRef
PubMed
PubMed Central
Google Scholar
Li Y, Hu M, Shen Y. Gene regulation in the 3D genome. Hum Mol Genet. 2018;27(R2):R228–r33. https://doi.org/10.1093/hmg/ddy164.
CrossRef
PubMed
PubMed Central
Google Scholar
Yu M, Ren B. The three-dimensional Organization of Mammalian Genomes. Annu Rev Cell Dev Biol. 2017;33:265–89. https://doi.org/10.1146/annurev-cellbio-100616-060531.
CrossRef
PubMed
PubMed Central
Google Scholar
Crowley C, Yang Y, Qiu Y, Hu B, Won H, Ren B, et al. FIREcaller: an R package for detecting frequently interacting regions from Hi-C data. bioRxiv. 2019; 619288. https://doi.org/10.1101/619288.
Schmitt AD, Hu M, Jung I, Xu Z, Qiu Y, Tan CL, et al. A compendium of chromatin contact maps reveals spatially active regions in the human genome. Cell Rep. 2016;17(8):2042–59. https://doi.org/10.1016/j.celrep.2016.10.061.
CrossRef
PubMed
PubMed Central
Google Scholar
Rao Suhas SP, Huntley Miriam H, Durand Neva C, Stamenova Elena K, Bochkov Ivan D, Robinson James T, et al. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell. 2014;159(7):1665–80. https://doi.org/10.1016/j.cell.2014.11.021.
CrossRef
PubMed
PubMed Central
Google Scholar
Kaul A, Bhattacharyya S, Ay F. Identifying statistically significant chromatin contacts from Hi-C data with FitHiC2. Nat Protoc. 2020;15(3):991–1012. https://doi.org/10.1038/s41596-019-0273-0.
CrossRef
PubMed
PubMed Central
Google Scholar
Ay F, Bailey TL, Noble WS. Statistical confidence estimation for Hi-C data reveals regulatory chromatin contacts. Genome Res. 2014; https://doi.org/10.1101/gr.160374.113.
Juric I, Yu M, Abnousi A, Raviram R, Fang R, Zhao Y, et al. MAPS: model-based analysis of long-range chromatin interactions from PLAC-seq and HiChIP experiments. PLoS Comput Biol. 2019;15(4):e1006982. https://doi.org/10.1371/journal.pcbi.1006982.
CrossRef
PubMed
PubMed Central
Google Scholar
Xu Z, Zhang G, Jin F, Chen M, Furey TS, Sullivan PF, et al. A hidden Markov random field-based Bayesian method for the detection of long-range chromosomal interactions in Hi-C data. Bioinformatics. 2016;32(5):650–6. https://doi.org/10.1093/bioinformatics/btv650.
CrossRef
PubMed
Google Scholar
Xu Z, Zhang G, Wu C, Li Y, Hu M. FastHiC: a fast and accurate algorithm to detect long-range chromosomal interactions from Hi-C data. Bioinformatics. 2016;32(17):2692–5. https://doi.org/10.1093/bioinformatics/btw240.
CrossRef
PubMed
PubMed Central
Google Scholar
Ay F, Bailey TL, Noble WS. Statistical confidence estimation for Hi-C data reveals regulatory chromatin contacts. Genome Res. 2014;24(6):999–1011. https://doi.org/10.1101/gr.160374.113.
CrossRef
PubMed
PubMed Central
Google Scholar
Lawrence CE, Reilly AA. An expectation maximization (EM) algorithm for the identification and characterization of common sites in unaligned biopolymer sequences. Proteins. 1990;7(1):41–51. https://doi.org/10.1002/prot.340070105.
CrossRef
PubMed
Google Scholar
Bailey TL, Williams N, Misleh C, Li WW. MEME: discovering and analyzing DNA and protein sequence motifs. Nucleic Acids Res. 2006;34(Web Server issue):W369–73. https://doi.org/10.1093/nar/gkl198.
CrossRef
PubMed
PubMed Central
Google Scholar
Moses AM, Chiang DY, Eisen MB. Phylogenetic motif detection by expectation-maximization on evolutionary mixtures. Pac Symp Biocomput. 2004:324–35. https://doi.org/10.1142/9789812704856_0031.
Prakash A, Blanchette M, Sinha S, Tompa M. Motif discovery in heterogeneous sequence data. Pac Symp Biocomput. 2004:348–59. https://doi.org/10.1142/9789812704856_0033.
Sinha S, Blanchette M, Tompa M. PhyME: a probabilistic algorithm for finding motifs in sets of orthologous sequences. BMC Bioinform. 2004;5:170. https://doi.org/10.1186/1471-2105-5-170.
CrossRef
Google Scholar
Alipanahi B, Delong A, Weirauch MT, Frey BJ. Predicting the sequence specificities of DNA- and RNA-binding proteins by deep learning. Nat Biotechnol. 2015;33(8):831–8. https://doi.org/10.1038/nbt.3300.
CrossRef
PubMed
Google Scholar
Machanick P, Bailey TL. MEME-ChIP: motif analysis of large DNA datasets. Bioinformatics. 2011;27(12):1696–7.
PubMed
PubMed Central
CrossRef
Google Scholar
Foat BC, Morozov AV, Bussemaker HJ. Statistical mechanical modeling of genome-wide transcription factor occupancy data by MatrixREDUCE. Bioinformatics. 2006;22(14):e141–e9.
PubMed
CrossRef
Google Scholar
Quang D, Xie X. FactorNet: a deep learning framework for predicting cell type specific transcription factor binding from nucleotide-resolution sequential data. Methods. 2019;166:40–7. https://doi.org/10.1016/j.ymeth.2019.03.020.
CrossRef
PubMed
PubMed Central
Google Scholar
Zhou J, Troyanskaya OG. Predicting effects of noncoding variants with deep learning-based sequence model. Nat Methods. 2015;12(10):931–4. https://doi.org/10.1038/nmeth.3547.
CrossRef
PubMed
PubMed Central
Google Scholar
Ritchie GR, Dunham I, Zeggini E, Flicek P. Functional annotation of noncoding sequence variants. Nat Methods. 2014;11(3):294–6. https://doi.org/10.1038/nmeth.2832.
CrossRef
PubMed
PubMed Central
Google Scholar
Wang M, Tai C, Weinan E, Wei L. DeFine: deep convolutional neural networks accurately quantify intensities of transcription factor-DNA binding and facilitate evaluation of functional non-coding variants. Nucleic Acids Res. 2018;46(11):e69. https://doi.org/10.1093/nar/gky215.
CrossRef
PubMed
PubMed Central
Google Scholar
Stuart T, Butler A, Hoffman P, Hafemeister C, Papalexi E, Mauck WM III, et al. Comprehensive integration of single-cell data. Cell. 2019;177(7):1888–1902.e21.
PubMed
PubMed Central
CrossRef
Google Scholar
Adey AC. Integration of single-cell genomics datasets. Cell. 2019;177(7):1677–9.
PubMed
CrossRef
Google Scholar
Welch JD, Kozareva V, Ferreira A, Vanderburg C, Martin C, Macosko EZ. Single-cell multi-omic integration compares and contrasts features of brain cell identity. Cell. 2019;177:1873–1887.e17.
PubMed
PubMed Central
CrossRef
Google Scholar
Li G, Yang Y, Van Buren E, Li Y. Dropout imputation and batch effect correction for single-cell RNA sequencing data. J Bio-X Res. 2019;2(4):169–77.
Google Scholar
Bengio Y. Learning deep architectures for AI. Foundations and trends® in. Mach Learn. 2009;2(1):1–127.
Google Scholar
Zhang X, Zhao J, LeCun Y. Character-level convolutional networks for text classification. Adv Neural Inform Proc Syst. 2015:649–57.
Google Scholar
Deng Y, Bao F, Dai Q, Wu LF, Altschuler SJ. Scalable analysis of cell-type composition from single-cell transcriptomics using deep recurrent learning. Nat Methods. 2019;16(4):311–4.
PubMed
PubMed Central
CrossRef
Google Scholar
Lopez R, Regier J, Cole MB, Jordan MI, Yosef N. Deep generative modeling for single-cell transcriptomics. Nat Methods. 2018;15(12):1053–8.
PubMed
PubMed Central
CrossRef
Google Scholar
Van Dijk D, Sharma R, Nainys J, Yim K, Kathail P, Carr AJ, et al. Recovering gene interactions from single-cell data using data diffusion. Cell. 2018;174(3):716–729.e27.
PubMed
PubMed Central
CrossRef
Google Scholar
Eraslan G, Simon LM, Mircea M, Mueller NS, Theis FJ. Single-cell RNA-seq denoising using a deep count autoencoder. Nat Commun. 2019;10(1):1–14.
CrossRef
Google Scholar
Way GP, Greene CS. Bayesian deep learning for single-cell analysis. Nat Methods. 2018;15(12):1009–10.
PubMed
CrossRef
Google Scholar
Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, et al. Generative adversarial nets. Adv Neural Inform Process Syst. 2014;3:2672–80.
Google Scholar
Wolf FA, Angerer P, Theis FJ. SCANPY: large-scale single-cell gene expression data analysis. Genome Biol. 2018;19(1):15.
PubMed
PubMed Central
CrossRef
Google Scholar
Satija R, Farrell JA, Gennert D, Schier AF, Regev A. Spatial reconstruction of single-cell gene expression data. Nat Biotechnol. 2015;33(5):495–502.
PubMed
PubMed Central
CrossRef
Google Scholar
Trapnell C, Cacchiarelli D, Grimsby J, Pokharel P, Li S, Morse M, et al. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat Biotechnol. 2014;32(4):381.
PubMed
PubMed Central
CrossRef
Google Scholar
Kharchenko PV, Silberstein L, Scadden DT. Bayesian approach to single-cell differential expression analysis. Nat Methods. 2014;11(7):740.
PubMed
PubMed Central
CrossRef
Google Scholar
Finak G, McDavid A, Yajima M, Deng J, Gersuk V, Shalek AK, et al. MAST: a flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data. Genome Biol. 2015;16(1):278.
PubMed
PubMed Central
CrossRef
Google Scholar
Zheng GX, Terry JM, Belgrader P, Ryvkin P, Bent ZW, Wilson R, et al. Massively parallel digital transcriptional profiling of single cells. Nat Commun. 2017;8(1):1–12.
CrossRef
Google Scholar
Lun AT, McCarthy DJ, Marioni JC. A step-by-step workflow for low-level analysis of single-cell RNA-seq data with Bioconductor. F1000Research. 2016;5:2122.
PubMed
PubMed Central
Google Scholar
Chen W-P, Chang S-H, Tang C-Y, Liou M-L, Tsai S-JJ, Lin Y-L. Composition analysis and feature selection of the oral microbiota associated with periodontal disease. Biomed Res Int. 2018
Google Scholar
Nakano Y, Suzuki N, Kuwata F. Predicting oral malodour based on the microbiota in saliva samples using a deep learning approach. BMC Oral Health. 2018;18(1):128.
PubMed
PubMed Central
CrossRef
Google Scholar
Hsieh C-H, Chen W-M, Hsieh Y-S, Fan Y-C, Yang PE, Kang S-T, et al. A novel multi-gene detection platform for the analysis of miRNA expression. Sci Rep. 2018;8(1):1–9.
Google Scholar
Saxena D, Caufield PW, Li Y, Brown S, Song J, Norman R. Genetic classification of severe early childhood caries by use of subtracted DNA fragments from Streptococcus mutans. J Clin Microbiol. 2008;46(9):2868–73.
PubMed
PubMed Central
CrossRef
Google Scholar
Carnielli CM, Macedo CCS, De Rossi T, Granato DC, Rivera C, Domingues RR, et al. Combining discovery and targeted proteomics reveals a prognostic signature in oral cancer. Nat Commun. 2018;9(1):1–17.
CrossRef
Google Scholar
Torres PJ, Thompson J, McLean JS, Kelley ST, Edlund A. Discovery of a novel periodontal disease-associated bacterium. Microb Ecol. 2019;77(1):267–76.
PubMed
CrossRef
Google Scholar
Vapnik V. The nature of statistical learning theory. Berlin: Springer Science & Business Media; 2000.
CrossRef
Google Scholar
Kramer MA. Nonlinear principal component analysis using autoassociative neural networks. AICHE J. 1991;37(2):233–43.
CrossRef
Google Scholar
Oh M, Zhang L. DeepMicro: deep representation learning for disease prediction based on microbiome data. Sci Rep. 2020;10(1):1–9.
CrossRef
Google Scholar
Reiman D, Metwally A, Dai Y, Sun J. PopPhy-CNN: a phylogenetic tree embedded architecture for convolutional neural networks to predict host phenotype from metagenomic data. IEEE J Biomed Health Inform. 2020;24(10):2993–3001.
PubMed
CrossRef
Google Scholar