Skip to main content

Autonomous Systems and the Place of Biology Among Sciences. Perspectives for an Epistemology of Complex Systems

  • Chapter
  • First Online:
Multiplicity and Interdisciplinarity

Abstract

This paper discusses the epistemic status of biology from the standpoint of the systemic approach to living systems based on the notion of biological autonomy. This approach aims to provide an understanding of the distinctive character of biological systems and this paper analyses its theoretical and epistemological dimensions. The paper argues that, considered from this perspective, biological systems are examples of emergent phenomena, that the biological domain exhibits special features with respect to other domains, and that biology as a discipline employs some core concepts, such as teleology, function, regulation among others, that are irreducible to those employed in physics and chemistry. It addresses the claim made by Jacques Monod that biology as a science is marginal. It argues that biology is general insofar as it constitutes a paradigmatic example of complexity science, both in terms of how it defines the theoretical object of study and of the epistemology and heuristics employed. As such, biology may provide lessons that can be applied more widely to develop an epistemology of complex systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Bechtel, W. (2006). Discovering cell mechanisms: The creation of modern cell biology. Cambridge University Press.

    Google Scholar 

  • Bechtel, W. (2015). Can mechanistic explanation be reconciled with scale-free constitution and dynamics? Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences, 53, 84–93.

    Article  Google Scholar 

  • Bechtel, W. (2018). The importance of constraints and control in biological mechanisms: Insights from cancer research. Philosophy of Science, 85, 573–593.

    Article  Google Scholar 

  • Bechtel, W., & Abrahamsen, A. (2005). Explanation: A mechanist alternative. Studies in History and Philosophy of Biological and Biomedical Sciences, 36, 421–441.

    Article  Google Scholar 

  • Bechtel, W., & Richardson, R. C. (1992). Emergent phenomena and complex systems. In A. Beckermann, H. Flohr, & J. Kim (Eds.), Emergence or reduction? Essays on the prospects of nonreductive physicalism (pp. 257–288). de Gruyter.

    Google Scholar 

  • Bechtel, W., & Richardson, R. C. (1993/2010). Discovering complexity: Decomposition and localization as strategies in scientific research. MIT Press (1993 edition published by Princeton University Press).

    Google Scholar 

  • Bich, L. (2006). Autopoiesis and emergence. In G. Minati, E. Pessa, & M. Abram (Eds.), Systemics of emergence. Research and development (pp. 281–292). Springer.

    Chapter  Google Scholar 

  • Bich, L. (2012). Complex emergence and the living organization: An epistemological framework for biology. Synthese, 185(2), 215–232.

    Article  Google Scholar 

  • Bich, L., & Bocchi, G. (2012). Emergent processes as generation of discontinuities. In G. Minati, E. Pessa, & M. Abram (Eds.), Methods, models, simulations and approaches towards a general theory of change (pp. 135–146). World Scientific.

    Chapter  Google Scholar 

  • Bich, L., & Damiano, L. (2008). Order in the nothing: Autopoiesis and the organizational characterization of the living. Electronic Journal of Theoretical Physics, 4(16), 343–373.

    Google Scholar 

  • Bich, L., & Green, S. (2018). Is defining life pointless? Operational definitions at the frontiers of biology. Synthese, 195(9), 3919–3946.

    Article  Google Scholar 

  • Bich, L., Mossio, M., Ruiz-Mirazo, K., & Moreno, A. (2016). Biological regulation: Controlling the system from within. Biology and Philosophy, 31(2), 237–265.

    Article  Google Scholar 

  • Bich, L., Mossio, M., & Soto, A. (2020). Glycemia regulation: From feedback loops to organizational closure. Frontiers in Physiology, 11, 69.

    Article  Google Scholar 

  • Bitbol, M. (2007). Ontology, matter and emergence. Phenomenology and the Cognitive Science, 6, 293–307.

    Article  Google Scholar 

  • Christensen, W., & Bickhard, M. (2002). The process dynamics of normative function. The Monist, 85(1), 3–28.

    Article  Google Scholar 

  • Collier, J. (2000). Autonomy and process closure as the basis for functionality. Annals of the New York Academy of Science, 901, 280–290.

    Article  Google Scholar 

  • Craver, C. F., & Darden, L. (2013). In search of mechanisms: Discoveries across the life sciences. University of Chicago Press.

    Book  Google Scholar 

  • Cummins, R. (1975). Functional analysis. Journal of Philosophy 72, 741–765.

    Google Scholar 

  • Damiano, L. (2012). Co-emergences in life and science: A double proposal for biological emergentism. Synthese, 185, 273–294.

    Article  Google Scholar 

  • Delancey, C. S. (2006). Ontology and Teleofunctions: A Defense and Revision of the Systematic Account of Teleological Explanation. Synthese, 150(1), 69–98.

    Google Scholar 

  • El-Hani, C. N., & Queiroz, J. (2005). Downward determination. Abstracta, 1(2), 162–192.

    Google Scholar 

  • Gánti, T. (1975). Organization of chemical reactions into dividing and metabolizing units: The chemotons. Biosystems, 7, 15–21.

    Article  Google Scholar 

  • Glennan, S. (2017). The new mechanical philosophy. Oxford University Press.

    Book  Google Scholar 

  • Jonas, H. (1953). A critique of cybernetics. Social Research, 20, 172–192.

    Google Scholar 

  • Jonas, H. (1966). The phenomenon of life. Towards a philosophical biology. Harper and Row.

    Google Scholar 

  • Kampis, G. (1991). Self-modifying systems in biology and cognitive science. Pergamon Press.

    Google Scholar 

  • Kauffman, S. A. (2000). Investigations. Oxford University Press.

    Google Scholar 

  • Koutroufinis, S. A. (2017). Organism, Machine, Process. Towards a Process Ontology for Organismic Dynamics. Organisms. Journal of Biological Sciences, 1(1), 23–44.

    Google Scholar 

  • Levy, A., & Bechtel, W. (2013). Abstraction and the organization of mechanisms. Philosophy of Science, 80, 241–261.

    Article  Google Scholar 

  • Longo, G., & Montévil, M. (2013). Extended criticality, phase spaces and enablement in biology. Chaos, Solitons & Fractals, 55, 64–79.

    Article  Google Scholar 

  • Longo, G., Montévil, M., & Kauffman, S. (2012). No entailing laws, but enablement in the evolution of the biosphere. In Proceedings of the Fourteenth International Conference on Genetic and Evolutionary Computation Conference Companion—GECCO Companion ’12 (p. 1379). https://doi.org/10.1145/2330784.2330946.

  • Machamer, P., Darden, L., & Craver, C. F. (2000). Thinking about mechanisms. Philosophy of Science, 67, 1–25.

    Article  Google Scholar 

  • Maturana, H. (1988). Reality: The search for objectivity or the quest for a compelling argument. The Irish Journal of Psychology, 9(1), 25–85.

    Article  Google Scholar 

  • McLaughlin, P. (2001). What functions explain. Functional explanation and self-reproducing systems. Cambridge University Press.

    Google Scholar 

  • Millikan, R. G. (1989). In defense of proper functions. Philosophy of Science, 56, 288–302.

    Article  Google Scholar 

  • Minati, G., Penna, M. P., & Pessa, E. (1998). Thermodynamical and logical openness in general systems. Systems Research and Behavioral Science, 15(2), 131–145.

    Article  Google Scholar 

  • Minati, G., & Pessa, E. (2006). Collective beings. Springer.

    Google Scholar 

  • Monod, J. (1970). Les hasard et la necessité. Seuil.

    Google Scholar 

  • Montévil, M., Speroni, L., Sonnenschein, C., & Soto, A. M. (2016). Modeling mammary organogenesis from biological first principles: Cells and their physical constraints. Progress in Biophysics and Molecular Biology, 122, 1–12.

    Google Scholar 

  • Moreno, A., & Mossio, M. (2015). Biological autonomy: A philosophical and theoretical enquiry. Springer.

    Book  Google Scholar 

  • Moreno, A., & Suárez, J. (2020). Plurality of explanatory strategies in biology: Mechanisms and networks. In W. J. Gonzalez (Ed.), Methodological prospects for scientific research (pp. 141–165). Springer.

    Chapter  Google Scholar 

  • Mossio, M., & Bich, L. (2017). What makes biological organisation teleological? Synthese, 194(4), 1089–1114.

    Article  Google Scholar 

  • Mossio, M., Bich, L., & Moreno, A. (2013). Emergence, closure and inter-level causation in biological systems. Erkenntnis, 78(2), 153–178.

    Article  Google Scholar 

  • Mossio, M., Saborido, C., & Moreno, A. (2009). An organizational account of biological functions. British Journal of Philosophy of Science, 60(4), 813–841.

    Article  Google Scholar 

  • Neander, K. (1991). Functions as selected effects: The conceptual analyst’s defence. Philosophy of Science, 58, 168–184.

    Article  Google Scholar 

  • Pattee, H. H. (1972). The nature of hierarchical controls in living matter. In R. Rosen (Ed.), Foundations of mathematical biology. Volume I: Subcellular systems (pp. 1–22). Academic Press.

    Google Scholar 

  • Pessa, E. (1998). Emergence, self-organization, and quantum theory. In G. Minati (Ed.), First Italian Conference on Systemics (pp. 59–80). Apogeo.

    Google Scholar 

  • Pessa, E. (2011). The concept of particle in quantum field theory. In I. Licata & A. Sakaji (Eds.), Vision of oneness (pp. 13–40). Aracne.

    Google Scholar 

  • Piaget, J. (1967). Biologie et Connaissance. Gallimard.

    Google Scholar 

  • Piedrafita, G., Montero, F., Moran, F., Cardenas, M. L., & Cornish-Bowden, A. (2010). A simple self-maintaining metabolic system: Robustness, autocatalysis, bistability. PLoS Computational Biology, 6(8), e1000872.

    Article  Google Scholar 

  • Popa, R. (2004). Between necessity and probability: Searching for the definition and origin of life. Springer.

    Google Scholar 

  • Rashevsky, N. (1954). Topology and life: In search of general mathematical principles in biology and sociology. Bulletin of Mathematical Biophysics, 13, 317–348.

    Article  Google Scholar 

  • Rosen, R. (1972). Some relational cell models: The metabolism-repair systems. In R. Rosen (Ed.), Foundations of mathematical biology. Volume II: Cellular systems (pp. 217–253). Academic.

    Chapter  Google Scholar 

  • Rosen, R. (1978). Fundamentals of measurement and representation of natural systems. North Holland.

    Google Scholar 

  • Rosen, R. (1991). Life itself: A comprehensive inquiry into the nature, origin, and fabrication of life. Columbia University Press.

    Google Scholar 

  • Rosen, R. (2000). Essays on life itself. Columbia University Press.

    Google Scholar 

  • Saborido, C., & Moreno, A. (2015). Biological pathology from an organizational perspective. Theoretical Medicine and Bioethics, 36, 83–95.

    Article  Google Scholar 

  • Schlosser, G. (1998). Self-re-production and functionality: A systems theoretical approach to teleological explanation. Synthese, 116, 303–354.

    Article  Google Scholar 

  • Schrödinger, E. (1944). What’s life? The physical aspect of the living cell. Cambridge University Press.

    Google Scholar 

  • Varela, F. J. (1997). Patterns of life: Intertwining identity and cognition. Brain and Cognition, 34, 72–87.

    Article  Google Scholar 

  • Varela, F. G., Maturana, H. R., & Uribe, R. (1974). Autopoiesis: The organization of living systems, its characterization and a model. Biosystems, 5(4), 187–196.

    Article  Google Scholar 

  • Wimsatt, W. C. (1986). Forms of aggregativity. In A Donagan, , A. N. Perovich, M. V. Wedin (Eds.), Human nature and natural knowledge (pp. 259–291). Reidel.

    Chapter  Google Scholar 

Download references

Acknowledgments

The author acknowledges funding from the Ministerio de Ciencia, Innovación y Universidades, Spain (‘Ramon y Cajal’ Programme RYC-2016-19,798 and research project PID2019-104576GB-I00) and the Basque Government (Project: IT1228–19).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonardo Bich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bich, L. (2021). Autonomous Systems and the Place of Biology Among Sciences. Perspectives for an Epistemology of Complex Systems. In: Minati, G. (eds) Multiplicity and Interdisciplinarity. Contemporary Systems Thinking. Springer, Cham. https://doi.org/10.1007/978-3-030-71877-0_4

Download citation

Publish with us

Policies and ethics