Skip to main content

Reproduction at Advanced Parental Age

  • Chapter
  • First Online:
Clinical Management of Infertility

Part of the book series: Reproductive Medicine for Clinicians ((REMECL,volume 2))

  • 1039 Accesses

Abstract

The aging of the human ovary and the depletion of the oocyte pool have traditionally been the marker of the ending fecundity. The availability of assisted reproduction and the associated technologies such as cryopreservation and egg donation has significantly extended the possibility to conceive quite far beyond the natural human fecundity. Such pregnancies in women of advanced age raise serious medical and ethical concerns regarding the welfare of both the mother and child. The adverse effect of advanced maternal age (AMA) on offspring health has been studied extensively and is currently well recognized. Here we will describe the dilemmas for setting up an age limit for conception attempts, how to screen the candidates in the narrow path of safety, and how to manage these pregnancies.

In contrast, the association between advanced paternal age (APA) and poor reproductive outcome has been less defined and studied, and its exact effect remained somewhat uncertain. In this chapter this issue will be reviewed including the relationship between APA and changes in testicular function, reproductive hormones, sperm parameters, sperm DNA fragmentation, telomere length, de novo autosomal dominant mutations and other genetic and epigenetic factors risks, childhood cancer, congenital anomalies, neurodevelopmental outcomes, and obstetrical complications.

The objective of this chapter is to raise the medical and ethical dilemmas associated with parenthood at advanced maternal and paternal ages and to try to answer some of them, at least from our specific social and medical setup perspective.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Antinori S, Versaci C, Gholami GH, Panci C, Caffa B. Oocyte donation in menopausal women. Hum Reprod. 1993;8(9):1487–90.

    Article  CAS  PubMed  Google Scholar 

  2. Benshushan A, Schenker JG. Age limitation in human reproduction: is it justified? J Assist Reprod Genet. 1993;10(5):321–31.

    Article  CAS  PubMed  Google Scholar 

  3. Pantos K, Meimeti-Damianaki T, Vaxevanoglou T, Kapetanakis E. Oocyte donation in menopausal women aged over 40 years. Hum Reprod. 1993;8(3):488–91.

    Article  CAS  PubMed  Google Scholar 

  4. Paulson RJ, Sauer MV. Pregnancies in post-menopausal women. Oocyte donation to women of advanced reproductive age: ‘how old is too old?’. Hum Reprod. 1994;9(4):571–2.

    Article  CAS  PubMed  Google Scholar 

  5. Navot D, Laufer N, Kopolovic J, Rabinowitz R, Birkenfeld A, Lewin A, et al. Artificially induced endometrial cycles and establishment of pregnancies in the absence of ovaries. N Engl J Med. 1986;314(13):806–11.

    Article  CAS  PubMed  Google Scholar 

  6. Sauer MV, Paulson RJ, Lobo RA. Pregnancy after age 50: application of oocyte donation to women after natural menopause. Lancet. 1993;341(8841):321–3.

    Article  CAS  PubMed  Google Scholar 

  7. Soderstrom-Anttila V. Pregnancy and child outcome after oocyte donation. Hum Reprod Update. 2001;7(1):28–32.

    Article  CAS  PubMed  Google Scholar 

  8. Simchen MJ, Shulman A, Wiser A, Zilberberg E, Schiff E. The aged uterus: multifetal pregnancy outcome after ovum donation in older women. Hum Reprod. 2009;24(10):2500–3.

    Article  PubMed  Google Scholar 

  9. Simchen MJ, Yinon Y, Moran O, Schiff E, Sivan E. Pregnancy outcome after age 50. Obstet Gynecol. 2006;108(5):1084–8.

    Article  PubMed  Google Scholar 

  10. Cnattingius S, Forman MR, Berendes HW, Isotalo L. Delayed childbearing and risk of adverse perinatal outcome. A population-based study. JAMA. 1992;268(7):886–90.

    Article  CAS  PubMed  Google Scholar 

  11. Khalil A, Syngelaki A, Maiz N, Zinevich Y, Nicolaides KH. Maternal age and adverse pregnancy outcome: a cohort study. Ultrasound Obstet Gynecol. 2013;42(6):634–43.

    Article  CAS  PubMed  Google Scholar 

  12. Klemetti R, Gissler M, Sainio S, Hemminki E. At what age does the risk for adverse maternal and infant outcomes increase? Nationwide register-based study on first births in Finland in 2005-2014. Acta Obstet Gynecol Scand. 2016;95(12):1368–75.

    Article  PubMed  Google Scholar 

  13. Handelsman DJ, Staraj S. Testicular size: the effects of aging, malnutrition, and illness. J Androl. 1985;6(3):144–51.

    Article  CAS  PubMed  Google Scholar 

  14. Feldman HA, Longcope C, Derby CA, Johannes CB, Araujo AB, Coviello AD, et al. Age trends in the level of serum testosterone and other hormones in middle-aged men: longitudinal results from the Massachusetts male aging study. J Clin Endocrinol Metab. 2002;87(2):589–98.

    Article  CAS  PubMed  Google Scholar 

  15. Agarwal A, Makker K, Sharma R. Clinical relevance of oxidative stress in male factor infertility: an update. Am J Reprod Immunol. 2008;59(1):2–11.

    Article  CAS  PubMed  Google Scholar 

  16. Brahem S, Mehdi M, Elghezal H, Saad A. The effects of male aging on semen quality, sperm DNA fragmentation and chromosomal abnormalities in an infertile population. J Assist Reprod Genet. 2011;28(5):425–32.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Moskovtsev SI, Willis J, Mullen JB. Age-related decline in sperm deoxyribonucleic acid integrity in patients evaluated for male infertility. Fertil Steril. 2006;85(2):496–9.

    Article  CAS  PubMed  Google Scholar 

  18. Broer L, Codd V, Nyholt DR, Deelen J, Mangino M, Willemsen G, et al. Meta-analysis of telomere length in 19,713 subjects reveals high heritability, stronger maternal inheritance and a paternal age effect. Eur J Hum Genet. 2013;21(10):1163–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Crow JF. The origins, patterns and implications of human spontaneous mutation. Nat Rev Genet. 2000;1(1):40–7.

    Article  CAS  PubMed  Google Scholar 

  20. Curley JP, Mashoodh R, Champagne FA. Epigenetics and the origins of paternal effects. Horm Behav. 2011;59(3):306–14.

    Article  PubMed  Google Scholar 

  21. Menken J, Trussell J, Larsen U. Age and infertility. Science. 1986;233(4771):1389–94.

    Article  CAS  PubMed  Google Scholar 

  22. Flamigni C, Borini A. Counselling post-menopausal women for donor in-vitro fertilization and hormone replacement therapy. Hum Reprod. 1995;10(5):1237–41.

    Article  CAS  PubMed  Google Scholar 

  23. Navot D, Bergh PA, Williams MA, Garrisi GJ, Guzman I, Sandler B, et al. Poor oocyte quality rather than implantation failure as a cause of age-related decline in female fertility. Lancet. 1991;337(8754):1375–7.

    Article  CAS  PubMed  Google Scholar 

  24. Sibai BM, Frangieh A. Maternal adaptation to pregnancy. Curr Opin Obstet Gynecol. 1995;7(6):420–6.

    Article  CAS  PubMed  Google Scholar 

  25. Paulson RJ, Boostanfar R, Saadat P, Mor E, Tourgeman DE, Slater CC, et al. Pregnancy in the sixth decade of life: obstetric outcomes in women of advanced reproductive age. JAMA. 2002;288(18):2320–3.

    Article  PubMed  Google Scholar 

  26. Salihu HM, Shumpert MN, Slay M, Kirby RS, Alexander GR. Childbearing beyond maternal age 50 and fetal outcomes in the United States. Obstet Gynecol. 2003;102(5 Pt 1):1006–14.

    PubMed  Google Scholar 

  27. Jequier AM, Winterton WR. Diagnostic problems of trophoblastic disease in women aged 50 or more. Obstet Gynecol. 1973;42(3):378–87.

    CAS  PubMed  Google Scholar 

  28. Naeye RL. Maternal age, obstetric complications, and the outcome of pregnancy. Obstet Gynecol. 1983;61(2):210–6.

    CAS  PubMed  Google Scholar 

  29. Tuck SM, Yudkin PL, Turnbull AC. Pregnancy outcome in elderly primigravidae with and without a history of infertility. Br J Obstet Gynaecol. 1988;95(3):230–7.

    Article  CAS  PubMed  Google Scholar 

  30. Yogev Y, Melamed N, Bardin R, Tenenbaum-Gavish K, Ben-Shitrit G, Ben-Haroush A. Pregnancy outcome at extremely advanced maternal age. Am J Obstet Gynecol. 2010;203(6):558.e1–7.

    Article  Google Scholar 

  31. Dior UP, Laufer N, Chill HH, Granovsky-Grisaru S, Yagel S, Yaffe H, et al. Increased incidence of preeclampsia in mothers of advanced age conceiving by oocyte donation. Arch Gynecol Obstet. 2018;297(5):1293–9.

    Article  PubMed  Google Scholar 

  32. Zalud I, Shaha S. Three-dimensional sonography of the placental and uterine spiral vasculature: influence of maternal age and parity. J Clin Ultrasound. 2008;36(7):391–6.

    Article  PubMed  Google Scholar 

  33. Dulitzki M, Soriano D, Schiff E, Chetrit A, Mashiach S, Seidman DS. Effect of very advanced maternal age on pregnancy outcome and rate of cesarean delivery. Obstet Gynecol. 1998;92(6):935–9.

    CAS  PubMed  Google Scholar 

  34. Sheffer-Mimouni G, Mashiach S, Dor J, Levran D, Seidman DS. Factors influencing the obstetric and perinatal outcome after oocyte donation. Hum Reprod. 2002;17(10):2636–40.

    Article  PubMed  Google Scholar 

  35. Kirz DS, Dorchester W, Freeman RK. Advanced maternal age: the mature gravida. Am J Obstet Gynecol. 1985;152(1):7–12.

    Article  CAS  PubMed  Google Scholar 

  36. Ziadeh S, Yahaya A. Pregnancy outcome at age 40 and older. Arch Gynecol Obstet. 2001;265(1):30–3.

    Article  CAS  PubMed  Google Scholar 

  37. Smith GC, Cordeaux Y, White IR, Pasupathy D, Missfelder-Lobos H, Pell JP, et al. The effect of delaying childbirth on primary cesarean section rates. PLoS Med. 2008;5(7):e144.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Bewley S, Wright JT. Maternal death associated with ovum donation twin pregnancy. Hum Reprod. 1991;6(6):898–9.

    Article  CAS  PubMed  Google Scholar 

  39. Edwards RG. Pregnancies are acceptable in post-menopausal women. Hum Reprod. 1993;8(10):1542–4.

    Article  CAS  PubMed  Google Scholar 

  40. Schenker JG. The therapeutic approach to infertility in cases of ovarian failure. Ann N Y Acad Sci. 1991;626:414–30.

    Article  CAS  PubMed  Google Scholar 

  41. Kenny LC, Lavender T, McNamee R, O’Neill SM, Mills T, Khashan AS. Advanced maternal age and adverse pregnancy outcome: evidence from a large contemporary cohort. PLoS One. 2013;8(2):e56583.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Cobo A, Bellver J, Domingo J, Perez S, Crespo J, Pellicer A, et al. New options in assisted reproduction technology: the Cryotop method of oocyte vitrification. Reprod Biomed Online. 2008;17(1):68–72.

    Article  PubMed  Google Scholar 

  43. Noyes N, Hampton BS, Berkeley A, Licciardi F, Grifo J, Krey L. Factors useful in predicting the success of oocyte donation: a 3-year retrospective analysis. Fertil Steril. 2001;76(1):92–7.

    Article  CAS  PubMed  Google Scholar 

  44. Shufaro Y, Schenker JG. Cryopreservation of human genetic material. Ann N Y Acad Sci. 2010;1205:220–4.

    Article  PubMed  Google Scholar 

  45. Humaidan P, Kol S, Papanikolaou E. GnRH agonist for triggering of final oocyte maturation: time for a change of practice? Hum Reprod Update. 2011;17(4):510–24.

    Article  CAS  PubMed  Google Scholar 

  46. Schenker JG. Sperm, oocyte, and pre-embryo donation. J Assist Reprod Genet. 1995;12(8):499–508.

    Article  CAS  PubMed  Google Scholar 

  47. Toriello HV, Meck JM, Professional P, Guidelines C. Statement on guidance for genetic counseling in advanced paternal age. Genet Med. 2008;10(6):457–60.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Martin RH. Genetics of human sperm. J Assist Reprod Genet. 1998;15(5):240–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ford WC, North K, Taylor H, Farrow A, Hull MG, Golding J. Increasing paternal age is associated with delayed conception in a large population of fertile couples: evidence for declining fecundity in older men. The ALSPAC Study Team (Avon Longitudinal Study of Pregnancy and Childhood). Hum Reprod. 2000;15(8):1703–8.

    Article  CAS  PubMed  Google Scholar 

  50. Hassan MA, Killick SR. Effect of male age on fertility: evidence for the decline in male fertility with increasing age. Fertil Steril. 2003;79(Suppl 3):1520–7.

    Article  PubMed  Google Scholar 

  51. Kidd SA, Eskenazi B, Wyrobek AJ. Effects of male age on semen quality and fertility: a review of the literature. Fertil Steril. 2001;75(2):237–48.

    Article  CAS  PubMed  Google Scholar 

  52. Eskenazi B, Wyrobek AJ, Sloter E, Kidd SA, Moore L, Young S, et al. The association of age and semen quality in healthy men. Hum Reprod. 2003;18(2):447–54.

    Article  CAS  PubMed  Google Scholar 

  53. Hossain MM, Fatima P, Rahman D, Hossain HB. Semen parameters at different age groups of male partners of infertile couples. Mymensingh Med J. 2012;21(2):306–15.

    CAS  PubMed  Google Scholar 

  54. Mukhopadhyay D, Varghese AC, Pal M, Banerjee SK, Bhattacharyya AK, Sharma RK, et al. Semen quality and age-specific changes: a study between two decades on 3,729 male partners of couples with normal sperm count and attending an andrology laboratory for infertility-related problems in an Indian city. Fertil Steril. 2010;93(7):2247–54.

    Article  PubMed  Google Scholar 

  55. Slama R, Bouyer J, Windham G, Fenster L, Werwatz A, Swan SH. Influence of paternal age on the risk of spontaneous abortion. Am J Epidemiol. 2005;161(9):816–23.

    Article  PubMed  Google Scholar 

  56. Belloc S, Cohen-Bacrie P, Benkhalifa M, Cohen-Bacrie M, De Mouzon J, Hazout A, et al. Effect of maternal and paternal age on pregnancy and miscarriage rates after intrauterine insemination. Reprod Biomed Online. 2008;17(3):392–7.

    Article  PubMed  Google Scholar 

  57. Agarwal A, Said TM. Role of sperm chromatin abnormalities and DNA damage in male infertility. Hum Reprod Update. 2003;9(4):331–45.

    Article  CAS  PubMed  Google Scholar 

  58. Alshahrani S, Agarwal A, Assidi M, Abuzenadah AM, Durairajanayagam D, Ayaz A, et al. Infertile men older than 40 years are at higher risk of sperm DNA damage. Reprod Biol Endocrinol. 2014;12:103.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Moustafa MH, Sharma RK, Thornton J, Mascha E, Abdel-Hafez MA, Thomas AJ Jr, et al. Relationship between ROS production, apoptosis and DNA denaturation in spermatozoa from patients examined for infertility. Hum Reprod. 2004;19(1):129–38.

    Article  CAS  PubMed  Google Scholar 

  60. Sharma RK, Said T, Agarwal A. Sperm DNA damage and its clinical relevance in assessing reproductive outcome. Asian J Androl. 2004;6(2):139–48.

    CAS  PubMed  Google Scholar 

  61. Erenpreiss J, Spano M, Erenpreisa J, Bungum M, Giwercman A. Sperm chromatin structure and male fertility: biological and clinical aspects. Asian J Androl. 2006;8(1):11–29.

    Article  CAS  PubMed  Google Scholar 

  62. Zhang X, San Gabriel M, Zini A. Sperm nuclear histone to protamine ratio in fertile and infertile men: evidence of heterogeneous subpopulations of spermatozoa in the ejaculate. J Androl. 2006;27(3):414–20.

    Article  PubMed  CAS  Google Scholar 

  63. Singh NP, Muller CH, Berger RE. Effects of age on DNA double-strand breaks and apoptosis in human sperm. Fertil Steril. 2003;80(6):1420–30.

    Article  PubMed  Google Scholar 

  64. Spano M, Bonde JP, Hjollund HI, Kolstad HA, Cordelli E, Leter G. Sperm chromatin damage impairs human fertility. The Danish First Pregnancy Planner Study Team. Fertil Steril. 2000;73(1):43–50.

    Article  CAS  PubMed  Google Scholar 

  65. Bungum M, Humaidan P, Axmon A, Spano M, Bungum L, Erenpreiss J, et al. Sperm DNA integrity assessment in prediction of assisted reproduction technology outcome. Hum Reprod. 2007;22(1):174–9.

    Article  CAS  PubMed  Google Scholar 

  66. Oleszczuk K, Augustinsson L, Bayat N, Giwercman A, Bungum M. Prevalence of high DNA fragmentation index in male partners of unexplained infertile couples. Andrology. 2013;1(3):357–60.

    Article  CAS  PubMed  Google Scholar 

  67. Evenson DP, Jost LK, Marshall D, Zinaman MJ, Clegg E, Purvis K, et al. Utility of the sperm chromatin structure assay as a diagnostic and prognostic tool in the human fertility clinic. Hum Reprod. 1999;14(4):1039–49.

    Article  CAS  PubMed  Google Scholar 

  68. Absalan F, Ghannadi A, Kazerooni M, Parifar R, Jamalzadeh F, Amiri S. Value of sperm chromatin dispersion test in couples with unexplained recurrent abortion. J Assist Reprod Genet. 2012;29(1):11–4.

    Article  PubMed  Google Scholar 

  69. Ford HB, Schust DJ. Recurrent pregnancy loss: etiology, diagnosis, and therapy. Rev Obstet Gynecol. 2009;2(2):76–83.

    PubMed  PubMed Central  Google Scholar 

  70. Khadem N, Poorhoseyni A, Jalali M, Akbary A, Heydari ST. Sperm DNA fragmentation in couples with unexplained recurrent spontaneous abortions. Andrologia. 2014;46(2):126–30.

    Article  CAS  PubMed  Google Scholar 

  71. Simon L, Brunborg G, Stevenson M, Lutton D, McManus J, Lewis SE. Clinical significance of sperm DNA damage in assisted reproduction outcome. Hum Reprod. 2010;25(7):1594–608.

    Article  CAS  PubMed  Google Scholar 

  72. Zini A. Are sperm chromatin and DNA defects relevant in the clinic? Syst Biol Reprod Med. 2011;57(1–2):78–85.

    Article  PubMed  Google Scholar 

  73. Zini A, Sigman M. Are tests of sperm DNA damage clinically useful? Pros and cons. J Androl. 2009;30(3):219–29.

    Article  CAS  PubMed  Google Scholar 

  74. Jin J, Pan C, Fei Q, Ni W, Yang X, Zhang L, et al. Effect of sperm DNA fragmentation on the clinical outcomes for in vitro fertilization and intracytoplasmic sperm injection in women with different ovarian reserves. Fertil Steril. 2015;103(4):910–6.

    Article  CAS  PubMed  Google Scholar 

  75. Osman A, Alsomait H, Seshadri S, El-Toukhy T, Khalaf Y. The effect of sperm DNA fragmentation on live birth rate after IVF or ICSI: a systematic review and meta-analysis. Reprod Biomed Online. 2015;30(2):120–7.

    Article  CAS  PubMed  Google Scholar 

  76. Humm KC, Sakkas D. Role of increased male age in IVF and egg donation: is sperm DNA fragmentation responsible? Fertil Steril. 2013;99(1):30–6.

    Article  CAS  PubMed  Google Scholar 

  77. Frattarelli JL, Miller KA, Miller BT, Elkind-Hirsch K, Scott RT Jr. Male age negatively impacts embryo development and reproductive outcome in donor oocyte assisted reproductive technology cycles. Fertil Steril. 2008;90(1):97–103.

    Article  PubMed  Google Scholar 

  78. Luna M, Finkler E, Barritt J, Bar-Chama N, Sandler B, Copperman AB, et al. Paternal age and assisted reproductive technology outcome in ovum recipients. Fertil Steril. 2009;92(5):1772–5.

    Article  PubMed  Google Scholar 

  79. Ferreira RC, Braga DP, Bonetti TC, Pasqualotto FF, Iaconelli A Jr, Borges E Jr. Negative influence of paternal age on clinical intracytoplasmic sperm injection cycle outcomes in oligozoospermic patients. Fertil Steril. 2010;93(6):1870–4.

    Article  PubMed  Google Scholar 

  80. Klonoff-Cohen HS, Natarajan L. The effect of advancing paternal age on pregnancy and live birth rates in couples undergoing in vitro fertilization or gamete intrafallopian transfer. Am J Obstet Gynecol. 2004;191(2):507–14.

    Article  PubMed  Google Scholar 

  81. de la Rochebrochard E, Thonneau P. Paternal age and maternal age are risk factors for miscarriage; results of a multicentre European study. Hum Reprod. 2002;17(6):1649–56.

    Article  PubMed  Google Scholar 

  82. Spandorfer SD, Avrech OM, Colombero LT, Palermo GD, Rosenwaks Z. Effect of parental age on fertilization and pregnancy characteristics in couples treated by intracytoplasmic sperm injection. Hum Reprod. 1998;13(2):334–8.

    Article  CAS  PubMed  Google Scholar 

  83. Whitcomb BW, Turzanski-Fortner R, Richter KS, Kipersztok S, Stillman RJ, Levy MJ, et al. Contribution of male age to outcomes in assisted reproductive technologies. Fertil Steril. 2011;95(1):147–51.

    Article  PubMed  Google Scholar 

  84. Drost JB, Lee WR. Biological basis of germline mutation: comparisons of spontaneous germline mutation rates among drosophila, mouse, and human. Environ Mol Mutagen. 1995;25(Suppl 26):48–64.

    Article  CAS  PubMed  Google Scholar 

  85. Vogel F, Rathenberg R. Spontaneous mutation in man. Adv Hum Genet. 1975;5:223–318.

    Article  CAS  PubMed  Google Scholar 

  86. Kong A, Frigge ML, Masson G, Besenbacher S, Sulem P, Magnusson G, et al. Rate of de novo mutations and the importance of father’s age to disease risk. Nature. 2012;488(7412):471–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Penrose LS. Parental age and mutation. Lancet. 1955;269(6885):312–3.

    Article  CAS  PubMed  Google Scholar 

  88. Tarin JJ, Brines J, Cano A. Long-term effects of delayed parenthood. Hum Reprod. 1998;13(9):2371–6.

    Article  CAS  PubMed  Google Scholar 

  89. Goriely A, Wilkie AO. Paternal age effect mutations and selfish spermatogonial selection: causes and consequences for human disease. Am J Hum Genet. 2012;90(2):175–200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Orioli IM, Castilla EE, Scarano G, Mastroiacovo P. Effect of paternal age in achondroplasia, thanatophoric dysplasia, and osteogenesis imperfecta. Am J Med Genet. 1995;59(2):209–17.

    Article  CAS  PubMed  Google Scholar 

  91. Glaser RL, Jabs EW. Dear old dad. Sci Aging Knowledge Environ. 2004;2004(3):re1.

    Article  PubMed  Google Scholar 

  92. Roth MP, Feingold J, Baumgarten A, Bigel P, Stoll C. Reexamination of paternal age effect in Down’s syndrome. Hum Genet. 1983;63(2):149–52.

    Article  CAS  PubMed  Google Scholar 

  93. Sloter E, Nath J, Eskenazi B, Wyrobek AJ. Effects of male age on the frequencies of germinal and heritable chromosomal abnormalities in humans and rodents. Fertil Steril. 2004;81(4):925–43.

    Article  PubMed  Google Scholar 

  94. Stene J, Fischer G, Stene E, Mikkelsen M, Petersen E. Paternal age effect in Down’s syndrome. Ann Hum Genet. 1977;40(3):299–306.

    Article  CAS  PubMed  Google Scholar 

  95. Fisch H, Hyun G, Golden R, Hensle TW, Olsson CA, Liberson GL. The influence of paternal age on Down syndrome. J Urol. 2003;169(6):2275–8.

    Article  PubMed  Google Scholar 

  96. McIntosh GC, Olshan AF, Baird PA. Paternal age and the risk of birth defects in offspring. Epidemiology. 1995;6(3):282–8.

    Article  CAS  PubMed  Google Scholar 

  97. Zhu JL, Madsen KM, Vestergaard M, Olesen AV, Basso O, Olsen J. Paternal age and congenital malformations. Hum Reprod. 2005;20(11):3173–7.

    Article  PubMed  Google Scholar 

  98. Thomas NS, Durkie M, Van Zyl B, Sanford R, Potts G, Youings S, et al. Parental and chromosomal origin of unbalanced de novo structural chromosome abnormalities in man. Hum Genet. 2006;119(4):444–50.

    Article  PubMed  Google Scholar 

  99. Francke U, Felsenstein J, Gartler SM, Migeon BR, Dancis J, Seegmiller JE, et al. The occurrence of new mutants in the X-linked recessive Lesch-Nyhan disease. Am J Hum Genet. 1976;28(2):123–37.

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Sommer SS, Scaringe WA, Hill KA. Human germline mutation in the factor IX gene. Mutat Res. 2001;487(1–2):1–17.

    Article  CAS  PubMed  Google Scholar 

  101. Polednak AP. Paternal age in relation to selected birth defects. Hum Biol. 1976;48(4):727–39.

    CAS  PubMed  Google Scholar 

  102. Lian ZH, Zack MM, Erickson JD. Paternal age and the occurrence of birth defects. Am J Hum Genet. 1986;39(5):648–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Bille C, Skytthe A, Vach W, Knudsen LB, Andersen AM, Murray JC, et al. Parent’s age and the risk of oral clefts. Epidemiology. 2005;16(3):311–6.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Herkrath AP, Herkrath FJ, Rebelo MA, Vettore MV. Parental age as a risk factor for non-syndromic oral clefts: a meta-analysis. J Dent. 2012;40(1):3–14.

    Article  PubMed  Google Scholar 

  105. Su XJ, Yuan W, Huang GY, Olsen J, Li J. Paternal age and offspring congenital heart defects: a national cohort study. PLoS One. 2015;10(3):e0121030.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Archer NP, Langlois PH, Suarez L, Brender J, Shanmugam R. Association of paternal age with prevalence of selected birth defects. Birth Defects Res A Clin Mol Teratol. 2007;79(1):27–34.

    Article  CAS  PubMed  Google Scholar 

  107. Murray L, McCarron P, Bailie K, Middleton R, Davey Smith G, Dempsey S, et al. Association of early life factors and acute lymphoblastic leukaemia in childhood: historical cohort study. Br J Cancer. 2002;86(3):356–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Teras LR, Gaudet MM, Blase JL, Gapstur SM. Parental age at birth and risk of hematological malignancies in older adults. Am J Epidemiol. 2015;182(1):41–8.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Yip BH, Pawitan Y, Czene K. Parental age and risk of childhood cancers: a population-based cohort study from Sweden. Int J Epidemiol. 2006;35(6):1495–503.

    Article  PubMed  Google Scholar 

  110. Dockerty JD, Draper G, Vincent T, Rowan SD, Bunch KJ. Case-control study of parental age, parity and socioeconomic level in relation to childhood cancers. Int J Epidemiol. 2001;30(6):1428–37.

    Article  CAS  PubMed  Google Scholar 

  111. Heck JE, Lombardi CA, Meyers TJ, Cockburn M, Wilhelm M, Ritz B. Perinatal characteristics and retinoblastoma. Cancer Causes Control. 2012;23(9):1567–75.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Moll AC, Imhof SM, Kuik DJ, Bouter LM, Den Otter W, Bezemer PD, et al. High parental age is associated with sporadic hereditary retinoblastoma: the Dutch retinoblastoma register 1862-1994. Hum Genet. 1996;98(1):109–12.

    Article  CAS  PubMed  Google Scholar 

  113. Larfors G, Hallbook H, Simonsson B. Parental age, family size, and offspring’s risk of childhood and adult acute leukemia. Cancer Epidemiol Biomark Prev. 2012;21(7):1185–90.

    Article  Google Scholar 

  114. Sergentanis TN, Thomopoulos TP, Gialamas SP, Karalexi MA, Biniaris-Georgallis SI, Kontogeorgi E, et al. Risk for childhood leukemia associated with maternal and paternal age. Eur J Epidemiol. 2015;30(12):1229–61.

    Article  PubMed  Google Scholar 

  115. Nybo Andersen AM, Urhoj SK. Is advanced paternal age a health risk for the offspring? Fertil Steril. 2017;107(2):312–8.

    Article  PubMed  Google Scholar 

  116. Kimura M, Cherkas LF, Kato BS, Demissie S, Hjelmborg JB, Brimacombe M, et al. Offspring’s leukocyte telomere length, paternal age, and telomere elongation in sperm. PLoS Genet. 2008;4(2):e37.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Aviv A, Susser E. Leukocyte telomere length and the father’s age enigma: implications for population health and for life course. Int J Epidemiol. 2013;42(2):457–62.

    Article  PubMed  PubMed Central  Google Scholar 

  118. Printz C. Father’s age at birth of child may increase child’s blood cancer risk. Cancer. 2015;121(17):2863.

    PubMed  Google Scholar 

  119. Rook GA, Dalgleish A. Infection, immunoregulation, and cancer. Immunol Rev. 2011;240(1):141–59.

    Article  CAS  PubMed  Google Scholar 

  120. Buizer-Voskamp JE, Laan W, Staal WG, Hennekam EA, Aukes MF, Termorshuizen F, et al. Paternal age and psychiatric disorders: findings from a Dutch population registry. Schizophr Res. 2011;129(2–3):128–32.

    Article  PubMed  PubMed Central  Google Scholar 

  121. Miller B, Messias E, Miettunen J, Alaraisanen A, Jarvelin MR, Koponen H, et al. Meta-analysis of paternal age and schizophrenia risk in male versus female offspring. Schizophr Bull. 2011;37(5):1039–47.

    Article  PubMed  Google Scholar 

  122. Sipos A, Rasmussen F, Harrison G, Tynelius P, Lewis G, Leon DA, et al. Paternal age and schizophrenia: a population based cohort study. BMJ. 2004;329(7474):1070.

    Article  PubMed  PubMed Central  Google Scholar 

  123. Malaspina D, Corcoran C, Fahim C, Berman A, Harkavy-Friedman J, Yale S, et al. Paternal age and sporadic schizophrenia: evidence for de novo mutations. Am J Med Genet. 2002;114(3):299–303.

    Article  PubMed  PubMed Central  Google Scholar 

  124. Malaspina D, Reichenberg A, Weiser M, Fennig S, Davidson M, Harlap S, et al. Paternal age and intelligence: implications for age-related genomic changes in male germ cells. Psychiatr Genet. 2005;15(2):117–25.

    Article  PubMed  Google Scholar 

  125. Tsuchiya KJ, Takagai S, Kawai M, Matsumoto H, Nakamura K, Minabe Y, et al. Advanced paternal age associated with an elevated risk for schizophrenia in offspring in a Japanese population. Schizophr Res. 2005;76(2–3):337–42.

    Article  PubMed  Google Scholar 

  126. Wohl M, Gorwood P. Paternal ages below or above 35 years old are associated with a different risk of schizophrenia in the offspring. Eur Psychiatry. 2007;22(1):22–6.

    Article  CAS  PubMed  Google Scholar 

  127. Lee H, Malaspina D, Ahn H, Perrin M, Opler MG, Kleinhaus K, et al. Paternal age related schizophrenia (PARS): latent subgroups detected by k-means clustering analysis. Schizophr Res. 2011;128(1–3):143–9.

    Article  PubMed  PubMed Central  Google Scholar 

  128. Petersen L, Mortensen PB, Pedersen CB. Paternal age at birth of first child and risk of schizophrenia. Am J Psychiatry. 2011;168(1):82–8.

    Article  PubMed  Google Scholar 

  129. Durkin MS, Maenner MJ, Newschaffer CJ, Lee LC, Cunniff CM, Daniels JL, et al. Advanced parental age and the risk of autism spectrum disorder. Am J Epidemiol. 2008;168(11):1268–76.

    Article  PubMed  PubMed Central  Google Scholar 

  130. Hultman CM, Sandin S, Levine SZ, Lichtenstein P, Reichenberg A. Advancing paternal age and risk of autism: new evidence from a population-based study and a meta-analysis of epidemiological studies. Mol Psychiatry. 2011;16(12):1203–12.

    Article  CAS  PubMed  Google Scholar 

  131. Reichenberg A, Gross R, Weiser M, Bresnahan M, Silverman J, Harlap S, et al. Advancing paternal age and autism. Arch Gen Psychiatry. 2006;63(9):1026–32.

    Article  PubMed  Google Scholar 

  132. Sandin S, Schendel D, Magnusson P, Hultman C, Suren P, Susser E, et al. Autism risk associated with parental age and with increasing difference in age between the parents. Mol Psychiatry. 2016;21(5):693–700.

    Article  CAS  PubMed  Google Scholar 

  133. Frans EM, Sandin S, Reichenberg A, Langstrom N, Lichtenstein P, McGrath JJ, et al. Autism risk across generations: a population-based study of advancing grandpaternal and paternal age. JAMA Psychiatry. 2013;70(5):516–21.

    Article  PubMed  PubMed Central  Google Scholar 

  134. Iossifov I, O’Roak BJ, Sanders SJ, Ronemus M, Krumm N, Levy D, et al. The contribution of de novo coding mutations to autism spectrum disorder. Nature. 2014;515(7526):216–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Ronemus M, Iossifov I, Levy D, Wigler M. The role of de novo mutations in the genetics of autism spectrum disorders. Nat Rev Genet. 2014;15(2):133–41.

    Article  CAS  PubMed  Google Scholar 

  136. McGrath JJ, Petersen L, Agerbo E, Mors O, Mortensen PB, Pedersen CB. A comprehensive assessment of parental age and psychiatric disorders. JAMA Psychiatry. 2014;71(3):301–9.

    Article  PubMed  Google Scholar 

  137. Saha S, Barnett AG, Foldi C, Burne TH, Eyles DW, Buka SL, et al. Advanced paternal age is associated with impaired neurocognitive outcomes during infancy and childhood. PLoS Med. 2009;6(3):e40.

    Article  PubMed  Google Scholar 

  138. Kleinhaus K, Perrin M, Friedlander Y, Paltiel O, Malaspina D, Harlap S. Paternal age and spontaneous abortion. Obstet Gynecol. 2006;108(2):369–77.

    Article  CAS  PubMed  Google Scholar 

  139. Dain L, Auslander R, Dirnfeld M. The effect of paternal age on assisted reproduction outcome. Fertil Steril. 2011;95(1):1–8.

    Article  PubMed  Google Scholar 

  140. Zhu JL, Madsen KM, Vestergaard M, Basso O, Olsen J. Paternal age and preterm birth. Epidemiology. 2005;16(2):259–62.

    Article  PubMed  Google Scholar 

  141. Alio AP, Salihu HM, McIntosh C, August EM, Weldeselasse H, Sanchez E, et al. The effect of paternal age on fetal birth outcomes. Am J Mens Health. 2012;6(5):427–35.

    Article  PubMed  Google Scholar 

  142. Abel EL, Kruger M, Burd L. Effects of maternal and paternal age on Caucasian and Native American preterm births and birth weights. Am J Perinatol. 2002;19(1):49–54.

    Article  PubMed  Google Scholar 

  143. Kinzler WL, Ananth CV, Smulian JC, Vintzileos AM. Parental age difference and adverse perinatal outcomes in the United States. Paediatr Perinat Epidemiol. 2002;16(4):320–7.

    Article  PubMed  Google Scholar 

  144. Tough SC, Faber AJ, Svenson LW, Johnston DW. Is paternal age associated with an increased risk of low birthweight, preterm delivery, and multiple birth? Can J Public Health. 2003;94(2):88–92.

    Article  PubMed  PubMed Central  Google Scholar 

  145. Reichman NE, Teitler JO. Paternal age as a risk factor for low birthweight. Am J Public Health. 2006;96(5):862–6.

    Article  PubMed  PubMed Central  Google Scholar 

  146. Nybo Andersen AM, Hansen KD, Andersen PK, Smith GD. Advanced paternal age and risk of fetal death: a cohort study. Am J Epidemiol. 2004;160(12):1214–22.

    Article  PubMed  Google Scholar 

  147. Harlap S, Paltiel O, Deutsch L, Knaanie A, Masalha S, Tiram E, et al. Paternal age and preeclampsia. Epidemiology. 2002;13(6):660–7.

    Article  PubMed  Google Scholar 

  148. Ethics Committee of the American Society for Reproductive Medicine. Oocyte donation to postmenopausal women. Fertil Steril. 2004;82(Suppl 1):S254–5.

    Google Scholar 

  149. WHO. Global Health Observatory. 2011. http://www.who.int/gho/mortality_burden_disease/life_tables/life_tables/en/index.html.

  150. Pennings G. Postmenopausal women and the right of access to oocyte donation. J Appl Philos. 2001;18(2):171–81.

    Article  CAS  PubMed  Google Scholar 

  151. Kortman M, Macklon NS. Oocyte donation in postmenopausal women: medical and ethical considerations. Obstet Gynaecol Reprod Med. 2008;18(6):168–9.

    Article  Google Scholar 

  152. Goold I. Should older and postmenopausal women have access to assisted reproductive technology? Monash Bioeth Rev. 2005;24(1):27–46.

    Article  PubMed  Google Scholar 

  153. Eisenberg VH, Schenker JG. Pregnancy in the older woman: scientific and ethical aspects. Int J Gynaecol Obstet. 1997;56(2):163–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoel Shufaro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 International Academy of Human Reproduction

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Altman, E., Shufaro, Y. (2021). Reproduction at Advanced Parental Age. In: Schenker, J.G., Genazzani, A.R., Sciarra, J.J., Mettler, L., Birkhaeuser, M.H. (eds) Clinical Management of Infertility. Reproductive Medicine for Clinicians, vol 2. Springer, Cham. https://doi.org/10.1007/978-3-030-71838-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-71838-1_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-71837-4

  • Online ISBN: 978-3-030-71838-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics