Skip to main content

End-to-End Spectral-Temporal Fusion Using Convolutional Neural Network

  • Conference paper
  • First Online:
Pattern Recognition and Artificial Intelligence (MedPRAI 2020)

Abstract

In the last few years, Earth Observation sensors received a large development, offering, therefore, various types of data with different temporal, spatial, spectral, and radiometric resolutions. However, due to physical and budget limitations, the acquisition of images with the best characteristics is not feasible. Image fusion becomes a valuable technique to deal with some specific applications. In particular, the vegetation area, which needs a high spectral resolution and frequent coverage. In this paper, we present a novel fusion technique based on Convolutional Neural Networks (CNN) to combine two kinds of remote sensing data with different but complement spectral and temporal characteristics, to produce one high spectral and temporal resolution product. To the best of our knowledge, this is the first attempt to deal with the spectral-temporal fusion problem. The feasibility of the proposed method is evaluated via Sentinel-2 data. The experimental results show that the proposed technique can achieve substantial gains in terms of fusion performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aiazzi, B., Alparone, L., Baronti, S., Garzelli, A., Selva, M.: Twenty-five years of pansharpening: a critical review and new developments. In: Signal and Image Processing for Remote Sensing, pp. 552–599. CRC Press (2012)

    Google Scholar 

  2. Alparone, L., Aiazzi, B., Baronti, S., Garzelli, A.: Remote Sensing Image Fusion. CRC Press, Boca Raton (2015)

    Google Scholar 

  3. Benzenati, T., Kallel, A., Kessentini, Y.: Two stages pan-sharpening details injection approach based on very deep residual networks. IEEE Trans. Geosci. Remote Sens. (2020)

    Google Scholar 

  4. Benzenati, T., Kessentini, Y., Kallel, A., Hallabia, H.: Generalized Laplacian pyramid pan-sharpening gain injection prediction based on CNN. IEEE Geosci. Remote Sens. Lett. 17(4), 651–655 (2019)

    Article  Google Scholar 

  5. Bovolo, F., Bruzzone, L., Capobianco, L., Garzelli, A., Marchesi, S., Nencini, F.: Analysis of the effects of pansharpening in change detection on VHR images. IEEE Geosci. Remote Sens. Lett. 7(1), 53–57 (2009)

    Article  Google Scholar 

  6. Chang, N.B., Bai, K.: Multisensor Data Fusion and Machine Learning for Environmental Remote Sensing. CRC Press, Boca Raton (2018)

    Google Scholar 

  7. Clevers, J.G., Kooistra, L., Van den Brande, M.M.: Using Sentinel-2 data for retrieving LAI and leaf and canopy chlorophyll content of a potato crop. Remote Sens. 9(5), 405 (2017)

    Article  Google Scholar 

  8. Daudt, R.C., Le Saux, B., Boulch, A., Gousseau, Y.: Urban change detection for multispectral earth observation using convolutional neural networks. In: IGARSS 2018–2018 IEEE International Geoscience and Remote Sensing Symposium, pp. 2115–2118. IEEE (2018)

    Google Scholar 

  9. Dong, C., Loy, C.C., He, K., Tang, X.: Image super-resolution using deep convolutional networks. IEEE Trans. Pattern Anal. Mach. Intell. 38(2), 295–307 (2015)

    Article  Google Scholar 

  10. Frampton, W.J., Dash, J., Watmough, G., Milton, E.J.: Evaluating the capabilities of Sentinel-2 for quantitative estimation of biophysical variables in vegetation. ISPRS J. Photogramm. Remote Sens. 82, 83–92 (2013)

    Article  Google Scholar 

  11. Gao, F., Masek, J., Schwaller, M., Hall, F.: On the blending of the Landsat and MODIS surface reflectance: predicting daily Landsat surface reflectance. IEEE Trans. Geosci. Remote Sens. 44(8), 2207–2218 (2006)

    Article  Google Scholar 

  12. Gilbertson, J.K., Kemp, J., Van Niekerk, A.: Effect of pan-sharpening multi-temporal Landsat 8 imagery for crop type differentiation using different classification techniques. Comput. Electron. Agric. 134, 151–159 (2017)

    Article  Google Scholar 

  13. Kim, J., Kwon Lee, J., Mu Lee, K.: Accurate image super-resolution using very deep convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1646–1654 (2016)

    Google Scholar 

  14. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  15. Liu, X., Deng, C., Chanussot, J., Hong, D., Zhao, B.: StfNet: a two-stream convolutional neural network for spatiotemporal image fusion. IEEE Trans. Geosci. Remote Sens. 57(9), 6552–6564 (2019)

    Article  Google Scholar 

  16. Masi, G., Cozzolino, D., Verdoliva, L., Scarpa, G.: Pansharpening by convolutional neural networks. Remote Sens. 8(7), 594 (2016)

    Article  Google Scholar 

  17. Planet: Satellite Imagery and Archive. https://planet.com/products/planet-imagery/. Accessed 01 July 2020

  18. Song, H., Liu, Q., Wang, G., Hang, R., Huang, B.: Spatiotemporal satellite image fusion using deep convolutional neural networks. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 11(3), 821–829 (2018)

    Article  Google Scholar 

  19. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  20. Wu, H., Zhang, H., Zhang, J., Xu, F.: Typical target detection in satellite images based on convolutional neural networks. In: 2015 IEEE International Conference on Systems, Man, and Cybernetics, pp. 2956–2961. IEEE (2015)

    Google Scholar 

  21. Yokoya, N., Chan, J.C.W., Segl, K.: Potential of resolution-enhanced hyperspectral data for mineral mapping using simulated EnMAP and Sentinel-2 images. Remote Sens. 8(3), 172 (2016)

    Article  Google Scholar 

  22. Yuhas, R.H., Goetz, A.F., Boardman, J.W.: Discrimination among semi-arid landscape endmembers using the spectral angle mapper (SAM) algorithm (1992)

    Google Scholar 

Download references

Acknowledgement

We gratefully acknowledge the support of NVIDIA Corporation with the contribution of the Titan Xp GPU used for this research.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Benzenati, T., Kallel, A., Kessentini, Y. (2021). End-to-End Spectral-Temporal Fusion Using Convolutional Neural Network. In: Djeddi, C., Kessentini, Y., Siddiqi, I., Jmaiel, M. (eds) Pattern Recognition and Artificial Intelligence. MedPRAI 2020. Communications in Computer and Information Science, vol 1322. Springer, Cham. https://doi.org/10.1007/978-3-030-71804-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-71804-6_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-71803-9

  • Online ISBN: 978-3-030-71804-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics