Skip to main content

HWID Consultancy

  • Chapter
  • First Online:
Human Work Interaction Design

Abstract

This chapter is for consultants rolling out solutions based on the HWID platform in multiple companies. As a normative platform for doing consultancy, HWID stands out with its few strict methodological requirements and much flexibility. The chapter presents benefits and challenges of using the HWID approach in socio-technical design cases and compares this to the use of classic user-centered design approaches and other socio-technical design approaches. The type of consultancy expertise that may benefit from using the platform is outlined. Socio-technical design cases are discussed from a consultant’s perspective. The chapter ends with suggested ethics guidelines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note that this chapter is a long chapter. Readers who are mostly interested in research relevant to doing HWID consultancy may skip Sects. 8.48.6, which present in detail two design cases that the author has been involved in and go directly to insights in Sect. 8.7. The purpose of presenting the design cases is to illustrate the use of relation artefacts in consultancy.

  2. 2.

    In the book ‘Coal and conflict’ (Scott, Mumford, McGivering, & Kirby, 1963). Mumford wrote chapter four on negotiating machines for management-worker negotiations, but the book was a collaborative effort led by Scott, really much about conflict rather than collaboration, and definitely not about harmony in the organisation.

  3. 3.

    https://ec.europa.eu/research/pdf/horizon-europe/annex-4.pdf.

  4. 4.

    “The category of micro-, small- and medium-sized enterprises (SMEs) is made up of enterprises which employ fewer than 250 persons and which have an annual turnover not exceeding 50 million euro, and/or an annual balance sheet total not exceeding 43 million euro.

  5. 5.

    See for example https://www.universal-robots.com/products/collaborative-robots-Cobots-benefits/.

  6. 6.

    A good example of socio-technical design with a focus on organisational practices is the imbrication approach (Leonardi, 2011).

References

  • Abdelnour-Nocera, J., & Clemmensen, T. (2018). Socio-technical HCI for ethical value exchange. In Lecture notes in computer science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics).https://doi.org/10.1007/978-3-319-92081-8_15.

  • Abdelnour-Nocera, J., & Clemmensen, T. (2019). Theorizing about socio-technical approaches to HCI. In B. R. Barricelli, V. Roto, T. Clemmensen, P. Campos, A. Lopes, F. Gonçalves, & J. Abdelnour-Nocera (Eds.), Human work interaction design. designing engaging automation (pp. 242–262). Cham: Springer International Publishing.

    Google Scholar 

  • Alon, L., & Nachmias, R. (2020). Anxious and frustrated but still competent: Affective aspects of interactions with personal information management. International Journal of Human-Computer Studies, 144, 102503.

    Google Scholar 

  • Appelbaum, S. H. (1997). Socio‐technical systems theory: An intervention strategy for organizational development. Management Decision, 35(6), 452–463. https://doi.org/10.1108/00251749710173823.

  • Bangor, A., Kortum, P., & Miller, J. (2009). Determining what individual SUS scores mean: Adding an adjective rating scale. Journal of Usability Studies, 4(3), 114–123.

    Google Scholar 

  • Baxter, G., & Sommerville, I. (2011). Socio-technical systems: From design methods to systems engineering. Interacting with Computers, 23(1), 4–17.

    Article  Google Scholar 

  • Bjørn-Andersen, N., & Clemmensen, T. (2017). The shaping of the Scandinavian Socio-Technical IS research tradition: Confessions of an accomplice. Scandinavian Journal of Information Systems, 29(1).

    Google Scholar 

  • Bostrom, R. P., & Heinen, J. S. (1977). MIS problems and failures: A socio-technical perspective, part II: The application of socio-technical theory. MIS Quarterly, 11–28.

    Google Scholar 

  • Boyer, L. (2004). The robot in the kitchen: The cultural politics of care-work and the development of in-home assistive technology. The Middle-States Geographer, 37, 72–79.

    Google Scholar 

  • Brach, M., & Korn, O. (2012). Assistive technologies at home and in the workplace—a field of research for exercise science and human movement science. European Review of Aging and Physical Activity, 9, 1–4 (2012). https://doi.org/10.1007/s11556-012-0099-z.

  • Cajander, Å., Larusdottir, M., Eriksson, E., & Nauwerck, G. (2015). Contextual personas as a method for understanding digital work environments. IFIP Advances in Information and Communication Technology, 468, 141–152. https://doi.org/10.1007/978-3-319-27048-7_10.

  • Carayon, P., Hancock, P., Leveson, N., Noy, I., Sznelwar, L., & Van Hootegem, G. (2015). Advancing a sociotechnical systems approach to workplace safety–developing the conceptual framework. Ergonomics, 58(4), 548–564.

    Article  Google Scholar 

  • Card, S. K., Moran, T. P., & Newell, A. (1983). The psychology of human-computer interaction. 1983. Hillsdale, NJ: Lawrence Erlbaum Associates.

    Google Scholar 

  • Carroll, J. M., & Campbell, R. (1986). Softening up hard science: Reply to Newell and card. Human-Computer Interaction, 2(3), 227–249. https://doi.org/10.1207/s15327051hci0203_3.

  • Cherns, A. (1987). Principles of sociotechnical design revisted. Human Relations, 40(3), 153–161. https://doi.org/10.1177/001872678704000303.

  • Christiernin, L. G. (2017). How to describe interaction with a collaborative robot. In Proceedings of the Companion of the 2017 ACM/IEEE International Conference on Human-Robot Interaction, 93–94. https://doi.org/10.1145/3029798.3038325.

  • Clemmensen, T., Hertzum, M., & Abdelnour-Nocera, J. (2020). Ordinary user experiences at work: A study of greenhouse growers. ACM Transactions on Computer-Human Interaction (TOCHI), June (Article no 16), 1–31. https://doi.org/10.1145/3386089.

  • Davison, R. M., & Bjørn-Andersen, N. (2019). Do we care about the societal impact of our research? The tyranny of the H-index and new value-oriented research directions. Information Systems Journal, 29(5), 989–993.

    Article  Google Scholar 

  • de Vries, L., & Bligård, L.-O. (2019). Visualising safety: The potential for using sociotechnical systems models in prospective safety assessment and design. Safety Science, 111, 80–93. https://doi.org/10.1016/j.ssci.2018.09.003.

  • Draxler, S., & Stevens, G. (2011). Supporting the collaborative appropriation of an open software ecosystem. Computer Supported Cooperative Work (CSCW), 20(4–5), 403–448.

    Article  Google Scholar 

  • El Zaatari, S., Marei, M., Li, W., & Usman, Z. (2019). Cobot programming for collaborative industrial tasks: An overview. Robotics and Autonomous Systems, 116, 162–180.

    Article  Google Scholar 

  • Elprama, S. A., Jewell, C. I. C., Jacobs, A., El Makrini, I., & Vanderborght, B. (2017). Attitudes of factory workers towards industrial and collaborative robots. In Proceedings of the Companion of the 2017 ACM/IEEE International Conference on Human-Robot Interaction (pp. 113–114). https://doi.org/10.1145/3029798.3038309.

  • Friedland, L. (2019). Culture eats UX strategy for breakfast. Interactions, 26(5), 78–81.

    Article  Google Scholar 

  • Galletta, D. F., Bjørn-Andersen, N., Leidner, D. E., Markus, M. L., McLean, E. R., Straub, D., & Wetherbe, J. (2019). If practice makes perfect, where do we stand? Communications of the Association for Information Systems, 45(1), 3.

    Google Scholar 

  • Garrety, K., & Badham, R. (2000). The politics of socio-technical intervention: An interactionist view. Technology Analysis & Strategic Management, 12(1), 103–118.

    Article  Google Scholar 

  • Görür, O., Rosman, B., Sivrikaya, F., & Albayrak, S. (2018). Social cobots: Anticipatory decision-making for collaborative robots incorporating unexpected human behaviors. In Proceedings of the 2018 ACM/IEEE International Conference on Human-Robot Interaction (pp. 398–406). ACM.

    Google Scholar 

  • Gray, W. D., & Salzman, M. C. (1998). Damaged merchandise? A review of experiments that compare usability evaluation methods. Human-Computer Interaction, 13(3), 203–261.

    Article  Google Scholar 

  • Gulotta, R., Odom, W., Forlizzi, J., & Faste, H. (2013). Digital artifacts as legacy: Exploring the lifespan and value of digital data. In CHI ’13. https://doi.org/10.1145/2470654.2466240.

  • Hague, A. C., & Benest, I. D. (1996). Towards over-the-shoulder guidance following a traditional learning metaphor. Computers & Education, 26(1–3), 61–70.

    Article  Google Scholar 

  • Hannola, L., Richter, A., Richter, S., & Stocker, A. (2018). Empowering production workers with digitally facilitated knowledge processes–a conceptual framework. International Journal of Production Research. https://doi.org/10.1080/00207543.2018.1445877.

  • Hertzum, M. (2021). Organizational implementation: The design in use of information systems. Synthesis Lectures on Human-Centered Informatics, 14(2), i–109.

    Article  Google Scholar 

  • Hirschheim, R., & Klein, H. K. (1989). Four paradigms of information systems development. Communications of the ACM, 32(10), 1199–1216.

    Article  Google Scholar 

  • Hsu, D. (2016). Robots in harmony with humans. In Proceedings of the Fourth International Conference on Human Agent Interaction (p. 1). ACM.

    Google Scholar 

  • Hughes, H. P. N., Clegg, C. W., Bolton, L. E., & Machon, L. C. (2017). Systems scenarios: A tool for facilitating the socio-technical design of work systems. Ergonomics, 60(10), 1319–1335.

    Article  Google Scholar 

  • Imanghaliyeva, A. A. (2020). A Systematic review of sociotechnical system methods between 1951 and 2019. In T. Ahram, W. Karwowski, A. Vergnano, F. Leali, & R. Taiar (Eds.), Intelligent human systems integration 2020 (pp. 580–587). Cham: Springer International Publishing.

    Chapter  Google Scholar 

  • Inal, Y., Clemmensen, T., Rajanen, D., Iivari, N., Rizvanoglu, K., & Sivaji, A. (2020). Positive developments but challenges still ahead: A survey study on UX professionals’ work practices. Journal of Usability Studies, 15(4).

    Google Scholar 

  • Khadka, R., Batlajery, B. V., Saeidi, A. M., Jansen, S., & Hage, J. (2014). How do professionals perceive legacy systems and software modernization? In Proceedings of the 36th International Conference on Software Engineering-ICSE 2014 (pp. 36–47). https://doi.org/10.1145/2568225.2568318.

  • Kolko, J. (2010). Abductive thinking and sensemaking: The drivers of design synthesis. Design Issues, 26(1), 15–28. https://doi.org/10.1162/desi.2010.26.1.15.

  • Kolko, J. (2015). Design thinking comes of age. Harvard Business Review, 93(9), 66–71. Retrieved from https://hbr.org/2015/09/design-thinking-comes-of-age.

  • Kragic, D., Gustafson, J., Karaoguz, H., Jensfelt, P., & Krug, R. (2017). Interactive, Collaborative Robots: Challenges and Opportunities. Retrieved from https://www.ijcai.org/proceedings/2018/0003.pdf.

  • Kuzle, A. (2019). Second graders’ metacognitive actions in problem solving revealed through action cards. The Mathematics Educator, 28(1), 27–60.

    Google Scholar 

  • Lachner, F., Naegelein, P., Kowalski, R., Spann, M., & Butz, A. (2016). Quantified UX: Towards a common organizational understanding of user experience. In Proceedings of the 9th Nordic Conference on Human-Computer Interaction-NordiCHI ’16 (pp. 56:1–56:10). https://doi.org/10.1145/2971485.2971501.

  • Leonardi, P. M. (2011). When flexible routines meet flexible technologies: Affordance, constraint, and the imbrication of human and material agencies. MIS Quarterly, 147–167.

    Google Scholar 

  • Ludwig, T., Kotthaus, C., Stein, M., Pipek, V., & Wulf, V. (2018). Revive old discussions! Socio-technical challenges for small and medium enterprises within industry 4.0. Proceedings of 16th European Conference on Computer-Supported Cooperative Work. https://doi.org/10.18420/ecscw2018_15.

  • Lukyanenko, R., & Parsons, J. (2020). Design theory indeterminacy: What is it, how can it be reduced, and why did the polar bear drown? Journal of the Association for Information Systems, 21(5), 1.

    Article  Google Scholar 

  • Magin, D. J., & Churches, A. E. (1995). Peer tutoring in engineering design: A case study. Studies in Higher Education, 20(1), 73–85.

    Article  Google Scholar 

  • Martinez, J., Harris, C., Jalali, C., Tung, J., & Meyer, R. (2015). Using peer-assisted learning to teach and evaluate residents’ musculoskeletal skills. Medical Education Online, 20(1), 27255.

    Article  Google Scholar 

  • Materna, Z., Kapinus, M., Beran, V., SmrĚ, P., Giuliani, M., Mirnig, N., … Tscheligi, M. (2017). Using persona, scenario, and use case to develop a human-robot augmented reality collaborative workspace. In Proceedings of the Companion of the 2017 ACM/IEEE International Conference on Human-Robot Interaction (pp. 201–202). ACM.

    Google Scholar 

  • Maurice, P., Allienne, L., Malaisé, A., & Ivaldi, S. (2018). Ethical and social considerations for the introduction of human-centered technologies at work. In 2018 IEEE Workshop on Advanced Robotics and Its Social Impacts (ARSO) (pp. 131–138). IEEE.

    Google Scholar 

  • Maurtua, I., Ibarguren, A., Kildal, J., Susperregi, L., & Sierra, B. (2017). Human–robot collaboration in industrial applications: Safety, interaction and trust. International Journal of Advanced Robotic Systems, 14(4), 1729881417716010.

    Google Scholar 

  • Michaelis, J. E., Siebert-Evenstone, A., Shaffer, D. W., & Mutlu, B. (2020). Collaborative or simply uncaged? understanding human-cobot interactions in automation. In Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems (pp. 1–12).

    Google Scholar 

  • Mucha, H., Büttner, S., & Röcker, C. (2016). Application areas for human-centered assistive systems. In Human-Computer Interaction–Perspectives on Industry 4.0. Workshop at i-KNOW 2016 Graz, Austria, Oct 2016.

    Google Scholar 

  • Mumford, E. (1994). New treatments or old remedies: Is business process reengineering really socio-technical design? The Journal of Strategic Information Systems, 3(4), 313–326.

    Article  Google Scholar 

  • Mumford, E. (2000). A socio-technical approach to systems design. Requirements Engineering, 5(2), 125–133.

    Article  Google Scholar 

  • Mumford, E. (2006). The story of socio-technical design: Reflections on its successes, failures and potential. Information Systems Journal, 16(4), 317–342. https://doi.org/10.1111/j.1365-2575.2006.00221.x.

  • Murphy-Hill, E., Murphy, G. C., & McGrenere, J. (2015). How do users discover new tools in software development and beyond? Computer Supported Cooperative Work (CSCW), 24(5), 389–422.

    Article  Google Scholar 

  • Norman, D. (2013). The design of everyday things: Revised and expanded edition. Basic books.

    Google Scholar 

  • Olphert, W., & Damodaran, L. (2007). Citizen participation and engagement in the design of e-government services: The missing link in effective ICT design and delivery. Journal of the Association for Information Systems, 8(9), 27.

    Article  Google Scholar 

  • Ørngreen, R., Henningsen, B., Gundersen, P., & Hautopp, H. (2017). The learning potential of video sketching. In Proceedings of the 16th European Conference on Elearning ISCAP Porto, Portugal 26–27 October 2017 (pp. 422–430).

    Google Scholar 

  • Pasmore, W., Francis, C., Haldeman, J., & Shani, A. (1982). Sociotechnical systems: A North American reflection on empirical studies of the seventies. Human Relations, 35(12), 1179–1204.

    Article  Google Scholar 

  • Rajanen, M., & Rajanen, D. (2020). Usability as speculum mundi: A core concept in socio-technical systems development. Complex Systems Informatics and Modeling Quarterly, 22, 49–59.

    Article  Google Scholar 

  • Randall, D., Dachtera, J., Dyrks, T., Nett, B., Pipek, V., Ramirez, L., … Wulf, V. (2018). Research into design research practices: Supporting an agenda towards self-reflectivity and transferability. In V. Wulf, V. Pipek, D. Randall, M. Rohde, K. Schmidt, & G. Stevens (Eds.), Socio informatics—a practice-based perspective on the design and use of IT artefacts (pp. 491–540). Oxford: Oxford University Press.

    Google Scholar 

  • Sanchez-Tamayo, N., & Wachs, J. P. (2018). Collaborative robots in surgical research: A low-cost adaptation. In Companion of the 2018 ACM/IEEE international conference on human-robot interaction (pp. 231–232). ACM.

    Google Scholar 

  • Santiago Walser, R., Seeber, I., & Maier, R. (2019). Designing a digital nudge for convergence: The role of decomposition of information load for decision making and choice accuracy. AIS Transactions on Human-Computer Interaction, 11(3), 179–207.

    Article  Google Scholar 

  • Sarker, S., Chatterjee, S., & Xiao, X. (2013). How “sociotechnical” is our IS research? An assessment and possible ways forward.

    Google Scholar 

  • Sarker, S., Chatterjee, S., Xiao, X., & Elbanna, A. (2019). The sociotechnical axis of cohesion for the is discipline: Its historical legacy and its continued relevance. Mis Quarterly, 43(3), 695–719.

    Article  Google Scholar 

  • Savage, P. E. (1972). Disaster planning: The use of action cards. British Medical Journal, 3(5817), 42.

    Article  Google Scholar 

  • Schleyer, G. K., Langdon, G. S., & James, S. (2005). Peer tutoring in conceptual design. European Journal of Engineering Education, 30(2), 245–254.

    Article  Google Scholar 

  • Schmidtler, J., Knott, V., Hölzel, C., & Bengler, K. (2015). Human centered assistance applications for the working environment of the future. Occupational Ergonomics, 12(3), 83–95.

    Article  Google Scholar 

  • Schon, D. A. (1984). The reflective practitioner: How professionals think in action (Vol. 5126). Basic Books.

    Google Scholar 

  • Schulz, R. (2017). Collaborative robots learning spatial language for picking and placing objects on a table. In Proceedings of the 5th International Conference on Human Agent Interaction (pp. 329–333). ACM.

    Google Scholar 

  • Scott, W. H., Mumford, E., McGivering, ’I. C., & Kirby, J. M. (1963). Coal and conflict: A study of industrial relations at collieries. Liverpool University Press.

    Google Scholar 

  • Secomb, J. (2008). A systematic review of peer teaching and learning in clinical education. Journal of Clinical Nursing, 17(6), 703–716.

    Article  Google Scholar 

  • Sein, M. K., Henfridsson, O., Purao, S., Rossi, M., & Lindgren, R. (2011). Action design research. MIS Quarterly. https://doi.org/10.2307/23043488.

  • Selbst, A. D., Boyd, D., Friedler, S. A., Venkatasubramanian, S., & Vertesi, J. (2019). Fairness and abstraction in sociotechnical systems. In Proceedings of the Conference on Fairness, Accountability, and Transparency (pp. 59–68).

    Google Scholar 

  • Sergeeva, A., & Huysman, M. (2015). Transforming work practices of operating room teams: The case of the Da Vinci robot Research-in-Progress. Retrieved from https://aisel.aisnet.org/cgi/viewcontent.cgi?article=1543&context=icis2015.

  • Stahl, B. C. (2007). ETHICS, morality and critique: An essay on Enid Mumford¡¯ s socio-technical approach. Journal of the Association for Information Systems, 8(9), 28.

    Article  Google Scholar 

  • Stenmark, M., Haage, M., & Topp, E. A. (2017). Simplified programming of re-usable skills on a safe industrial robot-prototype and evaluation.https://doi.org/10.1145/2909824.3020227.

  • Tan, J. T. C., & Inamura, T. (2013). Integration of work sequence and embodied interaction for collaborative work based human-robot interaction. In Proceedings of the 8th ACM/IEEE International Conference on Human-Robot Interaction, 239–240. Retrieved from http://dl.acm.org/citation.cfm?id=2447556.2447656.

  • Tohidi, M., Buxton, W., Baecker, R., & Sellen, A. (2006). Getting the right design and the design right. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (pp. 1243–1252).

    Google Scholar 

  • Truffer, B., Schippl, J., & Fleischer, T. (2017). Decentering technology in technology assessment: Prospects for socio-technical transitions in electric mobility in Germany. Technological Forecasting and Social Change, 122, 34–48. https://doi.org/10.1016/j.techfore.2017.04.020.

  • Twidale, M. B. (2005). Over the shoulder learning: Supporting brief informal learning. Computer Supported Cooperative Work (CSCW), 14(6), 505–547.

    Article  Google Scholar 

  • Vistisen, P., Jensen, T., & Poulsen, S. B. . (2016). Animating the ethical demand: Exploring user dispositions in industry innovation cases through animation-based sketching. ACM SIGCAS Computers and Society, 45(3), 318–325.

    Article  Google Scholar 

  • Vom Brocke, J., Maaß, W., Buxmann, P., Maedche, A., Leimeister, J. M., & Nter Pecht, G. (n.d.). Future work and enterprise systems. https://doi.org/10.1007/s12599-018-0544-2.

  • Wilson, J., & Clarke, D. (2004). Towards the modelling of mathematical metacognition. Mathematics Education Research Journal, 16(2), 25–48.

    Article  Google Scholar 

  • Wolfartsberger, J., Haslwanter, J. D. H., Froschauer, R., Lindorfer, R., Jungwirth, M., & Wahlmüller, D. (2018). Industrial perspectives on assistive systems for manual assembly tasks. In Proceedings of the 11th PErvasive Technologies Related to Assistive Environments Conference (pp. 289–291). ACM.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Torkil Clemmensen .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Clemmensen, T. (2021). HWID Consultancy. In: Human Work Interaction Design. Human–Computer Interaction Series. Springer, Cham. https://doi.org/10.1007/978-3-030-71796-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-71796-4_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-71795-7

  • Online ISBN: 978-3-030-71796-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics