Skip to main content

Digital Dimensions of Industry 4.0: Opportunities for Autonomic Computing and Applications

  • Chapter
  • First Online:
Autonomic Computing in Cloud Resource Management in Industry 4.0

Abstract

While walking the path through a fourth industrial revolution, the journey of transformation from the time when human intervention was needed, to the current state where the processes are completely automated and are still continuing to a new horizon. A game-changer adoption of the technology of “autonomic computing” supports industrial systems from deep inside and helps sustain with the ever-increasing complexity of systems, helps in customization to a greater extent, helps to manage the maintenance and reliability of the system that is beyond the limits of just human intervention. With this understanding, our work talks about important digital dimensions of smart manufacturing systems. It develops high-level awareness of technologies and ecosystems of smart manufacturing—Industry 4.0. Furthermore, readers would be able to identify tremendous opportunities for applications of computational intelligence referring to the capabilities and aspects of autonomic computing; those are self-healing, self-configuring, self-optimization, and self-protecting; thus pointers for innovation and applied research

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Reisman, G. (1998). Capitalism: A complete understanding of the nature and value of human economic life. Jameson Books (p. 127). ISBN 978-0-915463-73-2.

  2. Kagermann, H., et al. (2013). Recommendations for implementing the strategic initiative Industrie 4.0: Final report of the Industrie 4.0 working group. Germany: Acatech National Academy of Science and Engineering.

    Google Scholar 

  3. Jasperneite, J. (2012). Was Hinter Begriffen Wie Industrie 4.0 Steckt. Computer and Automation, 12, 24–28.

    Google Scholar 

  4. Lasi, H., et al. (2014). Industry 4.0. Business and Information Systems Engineering, 6(4), 239–242.

    Article  Google Scholar 

  5. Lu, Y. (2017). Industry 4.0: A survey on technologies, applications and open research issues. Journal of Industrial Information Integration, 6, 1–10. https://doi.org/10.1016/j.jii.2017.04.005.

    Article  Google Scholar 

  6. Industry 4.0 – Industrial revolution.

    Google Scholar 

  7. Alexopoulos, K., et al. (2016). A concept for context-aware computing in manufacturing: The white goods case. International Journal of Computer Integrated Manufacturing, 29(8), 839–849.

    Article  Google Scholar 

  8. Lu, Y. 2017b. Cyber physical system (CPS)-based industry 4.0: A survey. Journal of Industrial Integration and Management, 2(3). https://doi.org/10.1142/S2424862217500142.

  9. Tong, J. T. (2016). Finance and society in 21st century China: Chinese culture versus western markets (p. 151). Boca Raton, FL: CRC Press. ISBN 978-1-317-13522-7.

    Book  Google Scholar 

  10. Leurent, H., Boer, E.D., Fourth industrial revolution beacons of technology and innovation in manufacturing. White Paper, January 10, 2019. https://www.weforum.org/whitepapers/fourth-industrial-revolution-beacons-of-technology-andinnovation-in-manufacturing

  11. Lichtblau, K., et al. (2015). IMPULS-industrie 4.0-readiness. Aachen-Köln: Impuls-Stiftung des VDMA.

    Google Scholar 

  12. Geissbauer, R, et al. (2016) Industry 4.0: Building the digital enterprise.

    Google Scholar 

  13. Schumacher, A., et al. (2016). A maturity model for assessing industry 4.0 readiness and maturity of manufacturing enterprises. Procedia CIRP, 52, 161–166.

    Article  Google Scholar 

  14. Sanders, A., et al. (2016). Industry 4.0 implies lean manufacturing: Research activities in industry 4.0 function as enablers for lean manufacturing. Journal of Industrial Engineering and Management, 9(3), 811–833.

    Article  Google Scholar 

  15. Doh, S. W., et al. (2016). Systems integration in the lean manufacturing systems value chain to meet industry 4.0 requirements. In M. Borsato et al. (Eds.), Transdisciplinary engineering: Crossing boundaries (pp. 642–650).

    Google Scholar 

  16. https://www.ebsco.com/

  17. Lucas, R. (2003). The industrial revolution past and future.

    Google Scholar 

  18. Da Xu, L., et al. (2018). Industry 4.0: State of the art and future trends. International Journal of Production Research, 56(8), 2941–2962. https://doi.org/10.1080/00207543.2018.1444806.

    Article  Google Scholar 

  19. Berlanstein, L. R. (1992). The industrial revolution and work in nineteenth-century Europe. New York: Routledge.

    Google Scholar 

  20. Feinstein, Charles (September 1998). "Pessimism perpetuated: Real wages and the standard of living in Britain during and after the industrial revolution". Journal of Economic History 58 (3): 625–658. doi:https://doi.org/10.1017/s0022050700021100.

  21. Lucas, R. E. (2002). Lectures on economic growth (pp. 109–110). Cambridge: Harvard University Press. ISBN 978-0-674-01601-9.

    Google Scholar 

  22. Lucas, R. (2003). The industrial revolution. Minneapolis, MN: Federal Reserve Bank of Minneapolis.

    Google Scholar 

  23. Szreter, M. (February 1998). Urbanization, mortality, and the standard of living debate: new estimates of the expectation of life at birth in nineteenth-century British cities. The Economic History Review, 51(1), 104. https://doi.org/10.1111/1468-0289.00084.

    Article  Google Scholar 

  24. McCloskey, D. (2004). Review of The Cambridge Economic History of Modern Britain 4.

    Google Scholar 

  25. Landes, D. (1969). The unbound Prometheus. Cambridge: Press Syndicate of the University of Cambridge. ISBN 978-0-521-09418-4.

    Google Scholar 

  26. Horn, et al. (2010). Reconceptualizing the industrial revolution. Cambridge MA: MIT Press. ISBN 978-0-262-51562-7.

    Book  Google Scholar 

  27. Esposito, J. L. (Ed.). (2004). The Islamic world: Past and present. Volume 1: Abba - Hist (p. 174). Oxford: Oxford University Press. ISBN 978-0-19-516520-3.

    Google Scholar 

  28. Anthony Wrigley, E. (2018). Reconsidering the industrial revolution: England and Wales. Journal of Interdisciplinary History, 49(01), 9–42.

    Article  Google Scholar 

  29. Ray, I. (2011). Bengal Industries and the British industrial revolution (1757-1857) (pp. 7–10). Abingdon: Routledge. ISBN 978-1-136-82552-1.

    Book  Google Scholar 

  30. Landes, D. (1999). The wealth and poverty of nations. New York, NY: W.W. Norton & Company. ISBN 978-0-393-31888-3.

    Google Scholar 

  31. Keibek, S. A. (2016). The male occupational structure of England and Wales, 1600–1850 (PhD). In University of Cambridge. Cambridge.

    Google Scholar 

  32. Eric, H. The age of revolution: Europe 1789–1848 (p. 27). London: Weidenfeld & Nicolson Ltd.. ISBN 0-349-10484-0.

  33. Joseph, I. Africans and the industrial revolution in England. Cambridge: Cambridge University Press. ISBN 0-521-01079-9.

  34. Berg, et al. (1992). Rehabilitating the Industrial Revolution (PDF). The Economic History Review, 45(1), 24–50. https://doi.org/10.2307/2598327. JSTOR 2598327.

    Article  Google Scholar 

  35. Hudson, P. (1992). The industrial revolution (p. 11). London: Edward Arnold. ISBN 978-0-7131-6531-9.

    Google Scholar 

  36. Gupta, B. Cotton textiles and the great divergence: Lancashire, India and shifting competitive advantage, 1600–1850 (PDF). International Institute of Social History. Department of Economics, University of Warwick. Retrieved 5 December 2016.

    Google Scholar 

  37. Taylor, R. (1951). The transportation revolution, 1815–1860. ISBN 978-0-87332-101-3.

  38. Roe, J. W. (1916). English and American tool builders, New Haven, Connecticut. Yale University Press, LCCN 16011753. Reprinted by McGraw-Hill, New York and London, 1926(LCCN 27-24075); and by Lindsay Publications, Inc., Bradley, IL. ISBN 978-0-917914-73-7.

  39. Muntone, S. Second Industrial Revolution. Education.com. New York, NY: The McGraw-Hill Companies.

    Google Scholar 

  40. James, H. (1999). The second industrial revolution: The history of a concept. Storia Della Storiografia, 36, 81–90.

    Google Scholar 

  41. Smil, V. (2005). Creating the twentieth century: Technical Innovations of 1867–1914 and their lasting impact. ISBN 0-19-516874-7.

  42. Landes, D. S. (1969). The unbound prometheus: Technological change and industrial development in Western Europe from 1750 to the present (p. 92). Cambridge, NY: Press Syndicate of the University of Cambridge. ISBN 0-521-09418-6.

    Google Scholar 

  43. Maxwell, C. (1911). Faraday, michael. In H. Chisholm (Ed.), Encyclopædia Britannica (Vol. 10, 11th ed., p. 173). Cambridge: Cambridge University Press.

    Google Scholar 

  44. Beaudreau, C. Mass production, the stock market crash and the great depression. New York, Lincoln, Shanghi: Authors Choice Press.

    Google Scholar 

  45. Ford, H. et al. (1922). My life and work: An autobiography of Henry Ford.

    Google Scholar 

  46. A nation of steel: The making of Modern America 1965–1925. Baltimore and London: Johns Hopkins University Press. ISBN 978-0-8018-6502-2.

  47. Kaynak, O. (2005). The exhilarating journey from industrial electronics to industrial informatics. IEEE Transactions on Industrial Informatics, 1(2), 73.

    Article  Google Scholar 

  48. Wilamowski,B. (2005). Welcome to the IEEE transactions on industrial informatics, a new journal of the industrial electronics society. IEEE Transactions on Industrial Informatics, 1(1), 1–2.

    Article  Google Scholar 

  49. IFAC. (2007). Proceedings of IFAC international workshop on intelligent manufacturing systems (IMS’07), May 23, Alicante, Spain.

    Google Scholar 

  50. Xu, L. (2007). Editorial: Inaugural issue. Enterprise Information Systems, 1(1), 1–2. https://doi.org/10.1080/17517570712331393320.

    Article  MathSciNet  Google Scholar 

  51. Carcano, A., et al. (2011). A multidimensional critical state analysis for detecting intrusions in SCADA systems. IEEE Transactions on Industrial Informatics, 7(2), 179–186.

    Article  MathSciNet  Google Scholar 

  52. Maddison, A. (2007). Contours of the world economy I-2030AD. Oxford: Oxford University Press. ISBN 978-0199227204.

    Google Scholar 

  53. Recommendations for implementing the strategic initiative INDUSTRIE 4.0, 2013., http://www.acatech.de/fileadmin/userupload/BaumstrukturnachWebsite/Acatech/root/de/MaterialfuerSonderseiten/Industrie4.0/FinalreportIndustrie4.0accessible.pdf.

  54. The industrial internet consortium: A global nonprofit partnership of industry, government and academia, 2014. http://www.iiconsortium.org/about-us.htm.

  55. Li K. Q., & Premier of the State Council of China. Report on the work of the government. In Proceedings of the 3rd session of the 12th national people’s congress, March 2015.

    Google Scholar 

  56. Tan, W., et al. (2010). A methodology toward manufacturing grid-based virtual enterprise operation platform. Enterprise Information Systems, 4(3), 283–309. https://doi.org/10.1080/17517575.2010.504888.

    Article  Google Scholar 

  57. Ustundag, A., & Cevikcan, E. (2017). Industry 4.0: Managing the digital transformation. Heidelberg: Springer.

    Google Scholar 

  58. Jasperneite, J. (2012). Was Hinter Begriffen Wie Industrie 4.0 Steckt. Computer and Automation, 12, 24–28.

    Google Scholar 

  59. Lasi, H., et al. (2014). Industry 4.0. Business & information. Systems Engineering, 6(4), 239–242.

    Google Scholar 

  60. Kagermann, H., et al. (2013). Recommendations for implementing the strategic initiative Industrie 4.0: Final report of the Industrie 4.0 working group. Germany: Acatech National Academy of Science and Engineering.

    Google Scholar 

  61. Hermann, M., et al. Design principles for industrie 4.0 scenarios. Proceedings of 2016 49th Hawaii international conference on systems science, January 5–8, Maui, Hawaii. https://doi.org/10.1109/HICSS.2016.488.

  62. Moeuf, A., et al. (2017). The industrial management of SMEs in the era of industry 4.0. International Journal of Production Research. Published online 8 September 2017. https://doi.org/10.1080/00207543.2017.1372647.

  63. Qiu, M., et al. (2006). Efficient algorithm of energy minimization for heterogeneous wireless sensor network. In Embedded and ubiquitous computing, vol. 4096 of lecture notes in computer science (pp. 25–34). Berlin: Springer.

    Google Scholar 

  64. Qiu, M., & Sha, E. (2007). Energy-aware online algorithm to satisfy sampling rates with guaranteed probability for sensor applications. In High performance computing and communications, vol. 4782 of lecture notes in computer science (pp. 156–167). Berlin: Springer.

    Google Scholar 

  65. Wan, J., et al. (2010). Fuzzy feedback scheduling algorithm based on central processing unit utilization for a software-based computer numerical control system. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 224(7), 1133–1143.

    Article  Google Scholar 

  66. Soliman F. , Youssef, A. Internet-based e-commerce and its impact on manufacturing and business operations.

    Google Scholar 

  67. Industrial Management and Data Systems, 103(8–9), 546–552, (2003).

    Google Scholar 

  68. Markillie, P. (2012). A third industrial revolution. Economist, Special Report.

    Google Scholar 

  69. Rivkin, J. (2011). The third industrial revolution. New York, NY: New York Times.

    Google Scholar 

  70. Riedl, M., et al. (2014). Cyber-physical systems alter automation architectures. Annual Reviews in Control, 38(1), 123–133.

    Article  Google Scholar 

  71. Wan, J., et al. (2013). Enabling cyber-physical systems with machine-to-machine technologies. International Journal of AdHoc and Ubiquitous Computing, 13(3-4), 187–196.

    Article  Google Scholar 

  72. Wan, J., et al. (2014). Contextaware vehicular cyber-physical systems with cloud support: Architecture, challenges and solutions. IEEE Communications Magazine, 52(8), 106–113.

    Article  Google Scholar 

  73. Frazzon, M et al. (2013). Towards socio-cyber-physical systems in production networks. In Proceedings of the 46th CIRP conference on manufacturing systems (pp. 49–54).

    Google Scholar 

  74. Posada, J., et al. (2015). Visual computing as a key enabling technology for industrie 4.0 and industrial internet. IEEE Computer Graphics and Applications, 35(2), 26–40.

    Article  Google Scholar 

  75. Qin, J., et al. (2016). A categorical framework of manufacturing for industry 4.0 and beyond. Procedia CIRP, 52, 173–117.

    Article  Google Scholar 

  76. GTAI (Germany Trade & Invest). (2014). Industries 4.0-smart manufacturing for the future. Berlin: GTAI.

    Google Scholar 

  77. Sharma, N., Shamkuwar, M., & Singh, I. (2019). The history, present and future with IoT. In V. E. Balas, V. K. Solanki, R. Kumar, & M. Khari (Eds.), Internet of things and big data analytics for smart generation. Intelligent systems reference library (Vol. 154, pp. 27–51). Singapore: Springer.

    Google Scholar 

  78. Xia, F., et al. (2012). Internet of things. International Journal of Communication Systems, 25(9), 1101–1102.

    Article  Google Scholar 

  79. Liu, W. N., et al. (2012). RFID-enabled real-time production management system for Loncin motorcycle assembly line. International Journal of Computer Integrated Manufacturing, 25(1), 86–99.

    Article  Google Scholar 

  80. Dai, Q. Y., et al. (2012). Radio frequency identification-enabled real-time manufacturing execution system: A case study in an automotive part manufacturer. International Journal of Computer Integrated Manufacturing, 25(1), 51–65.

    Article  Google Scholar 

  81. Qu, T., et al. (2012). A case of implementing RFID-based real-time shop-floor material management for household electrical appliance manufacturers. Journal of Intelligent Manufacturing, 23(6), 2343–2356.

    Article  Google Scholar 

  82. Baunsgaard, V. V., & Clegg, S. R. (2015). Innovation: A critical assessment of the concept and scope of literature. In W. Selen, G. Roos, & R. Green (Eds.), The handbook of service innovation (pp. 5–25). Springer.: London.

    Chapter  Google Scholar 

  83. Pang, Z., et al. (2015). Design of a terminal solution for integration of in-home health care devices and services towards the internet-of-things. Enterprise Information Systems, 9, 86–116.

    Article  Google Scholar 

  84. Upton, J. F., & Stein, S. L. (2015). Responder technology alert monthly (Oct-Nov 2014) (no. PNNL-24014). Richland, WA: Pacific Northwest National Laboratory.

    Google Scholar 

  85. Flügel, C., & Gehrmann, V. (2009). Scientific workshop 4: Intelligent objects for the internet of things: Internet of things—Application of sensor networking logistic. In H. Gerhäuser, J. Hupp, C. Efstratiou, & J. Heppner (Eds.), Constructing ambient intelligence, communications in computer and information science (Vol. 32, pp. 16–26). Berlin: Springer.

    Google Scholar 

  86. Yan, B., & Huang, G. (2009). Supply chain information transmission based on RFID and internet of things. In Q. Luo (Ed.), Proceedings of the ISECS international colloquium on computing, communication, control, and management (pp. 166–169). Sanya: IEEE.

    Google Scholar 

  87. Zhengxia, W., & Laisheng, X. (2010). Modern logistics monitoring platform based on the internet of things. In R. Li & Y. Wu (Eds.), Proceedings of the international conference on intelligent computation technology and automation (ICICTA) (pp. 726–731). Changsha: IEEE.

    Google Scholar 

  88. Zhou, J., et al. (2015). Security and privacy in cloud-assisted wireless wearable communications: Challenges, solutions, and future directions. Wireless Communications, IEEE, 22, 136–144.

    Article  Google Scholar 

  89. Li, X., et al. (2011). Smart community: An internet of things application. IEEE Communications Magazine, 49(11), 68–75.

    Article  Google Scholar 

  90. Gubbi, J., et al. (2013). Internet of things (IoT): A vision, architectural elements, and future directions. Future Generation Computer Systems, 29(7), 1645–1660.

    Article  Google Scholar 

  91. Shrouf, F., & Miragliotta, G. (2015). Energy management based on internet of things: Practices and framework for adoption in production management. Journal of Cleaner Production, 100, 235–246.

    Article  Google Scholar 

  92. Manyika J, et al.. (2011) Big data: The next frontier for innovation, competition, and productivity. New York, NY: McKinsey Global Institute.

    Google Scholar 

  93. Monostori, L. (2014). Cyber-physical production systems: Roots, expectations and R&D challenges. Procedia CIRP, 17, 9–13.

    Article  Google Scholar 

  94. Mourtzis, D., & Vlachou, E. (2016). Cloud-based cyber-physical systems and quality of services. The TQM Journal, 28(5), 704–733.

    Article  Google Scholar 

  95. National Institute of Standards and Technology. Workshop report on foundations.

    Google Scholar 

  96. Farooq, M. U., et al. (2015). A review on internet of things (IoT). International Journal of Computer Applications, 113(1), 1–7.

    Article  Google Scholar 

  97. De Silva, P., & De Silva, P. (2016). Ipanera: An industry 4.0 based architecture for distributed soil-less food production systems. Proceedings of the 1st manufacturing and industrial engineering symposium, Colombo, Sri Lanka.

    Google Scholar 

  98. Kim, J. (2017). A review of cyber-physical system research relevant to the emerging IT trends: Industry 4.0, IoT, big data, and cloud computing. Journal of Industrial Integration and Management, 2(3). https://doi.org/10.1142/S2424862217500117.

  99. Lee, J., et al. (2014). Service innovation and smart analytics for industry 4.0 and big data environment. Procedia CIRP, 16, 3–8.

    Article  Google Scholar 

  100. Gürdür, D., et al. (2016). Making interoperability visible: Data visualization of cyber-physical systems development tool chains. Journal of Industrial Information Integration, 4, 26–34. https://doi.org/10.1016/j.jii.2016.09.002.

    Article  Google Scholar 

  101. Lee, J., et al. (2015). A cyber-physical systems architecture for industry 4.0-based manufacturing systems. Manufacturing Letters, 3, 18–23.

    Article  Google Scholar 

  102. Khaitan, S. K., & McCalley, J. D. (2015). Design techniques and applications of cyberphysical systems: A survey. IEEE Systems Journal, 9(2), 350–365.

    Article  Google Scholar 

  103. Thames, L., & Schaefer, D. (2016). Software-defined cloud manufacturing for industry 4.0. Procedia CIRP, 52, 12–17.

    Article  Google Scholar 

  104. Zheng, X., et al. (2014). Cloud service negotiation in internet of things environment: A mixed approach. IEEE Transactions on Industrial Informatics, 10(2), 1506–1515. https://doi.org/10.1109/TII.2014.2305641.

    Article  Google Scholar 

  105. Wang, C., et al. (2014) “IoT and cloud computing in automation of assembly modeling systems.” IEEE Transactions on Industrial Informatics 10 (2): 1426–1434. doi:https://doi.org/10.1109/TII.2014.2300346.

  106. Moghaddam, M., & Nof, S. (2017). Collaborative service-component integration in cloud manufacturing. International Journal of Production Research, 56, 677–691. https://doi.org/10.1080/00207543.2017.1374574.

    Article  Google Scholar 

  107. Thames, J. L., & Schaefer, D. (2017). Cybersecurity for industry 4.0 and advanced manufacturing environments with ensemble intelligence. In L. Thames & D. Schaefer (Eds.), Cybersecurity for industry 4.0.1 (pp. 243–265). Berlin: Springer (Springer Series in Advanced Manufacturing).

    Chapter  Google Scholar 

  108. Sharma, N., & Shamkuwar, M. (2019). Big data analysis in cloud and machine learning. In M. Mittal, V. Balas, L. Goyal, & R. Kumar (Eds.), Big data processing using spark in cloud. Studies in big data (Vol. 43, pp. 51–85). Singapore: Springer. https://doi.org/10.1007/978-981-13-0550-4_3.

    Chapter  Google Scholar 

  109. Thames, J. L., & Schaefer, D. (2017). Industry 4.0: An overview of key benefits, technologies, and challenges. In L. Thames & D. Schaefer (Eds.), Cybersecurity for industry 4.0.1 (pp. 1–33). Berlin: Springer (Springer Series in Advanced Manufacturing).

    Chapter  Google Scholar 

  110. Yeshodara, N.S., Nagojappa, N.S., & Kishore, N. (2014) IEEE international conference on cloud computing in emerging markets (CCEM), https://doi.org/10.1109/CCEM.2014.7015485.

  111. Hashim, J. (2007). Information communication technology (ICT) adoption among SME owners in Malaysia. International Journal of Business and Information, 2(2), 221–240.

    Google Scholar 

  112. Bloom, N., et al. (2014). The distinct effects of information technology and communication technology on firm organization. Management Science, 60(12), 2859–2885.

    Article  Google Scholar 

  113. Colin, M., et al. (2015). Information and communication technology as a key strategy for efficient supply chain management in manufacturing SMEs. Procedia Computer Science, 55, 833–842.

    Article  Google Scholar 

  114. Ketteni, E., et al. (2015). Information and communication technology and foreign direct investment: Interactions and contributions to economic growth. Empirical Economics, 48(4), 1525–1539.

    Article  Google Scholar 

  115. Lee, J., et al. (2015). A cyber-physical systems architecture for industry 40-based manufacturing systems. Manufacturing Letters, 3, 18–23.

    Article  Google Scholar 

  116. Brizzi, P., et al. (2013). Bringing the internet of things along the manufacturing line: a case study in controlling industrial robot and monitoring energy consumption remotely. In Emerging technologies & factory automation (ETFA) (pp. 1–8).

    Google Scholar 

  117. Xu, X. (2012). From cloud computing to cloud manufacturing. Robotics and Computer-Integrated Manufacturing, 28(1), 75–86.

    Article  Google Scholar 

  118. Liu, Q., et al. (2014). Cloud manufacturing service system for industrial-cluster-oriented application. Journal of Internet Technology, 28(1), 373–380.

    Google Scholar 

  119. Lee, K. (2016). Artificial intelligence, automation, and the economy. The White House Blog.

    Google Scholar 

  120. Lee, J., Bagheri, B., & Kao, H. A. (2015). A cyber-physical systems architecture for industry 4.0-based manufacturing systems. Manufacturing Letters, 3, 18–23.

    Article  Google Scholar 

  121. Da Xu, L., He, W., & Li, S. (2014). Internet of things in industries: A survey. IEEE Transactions on Industrial Informatics, 10(4), 2233–2243.

    Article  Google Scholar 

  122. Lee, J., et al. (2013). Recent advances and trends in predictive manufacturing systems in big data environment. Manufacturing Letters, 1(1), 38–41.

    Article  Google Scholar 

  123. Shi, J., et al. (2011). A survey of cyber-physical systems. In Wireless communications and signal processing (WCSP), 2011 international conference on IEEE (pp. 1–6).

    Google Scholar 

  124. Lee, J., et al. (2015). Industrial big data analytics and cyberphysical systems for future maintenance & service innovation. Procedia CIRP, 38, 3–7.

    Article  Google Scholar 

  125. Zhang, L., et al. (2014). Cloud manufacturing: A new manufacturing paradigm. Enterprise information system, 8(2), 167–187.

    Article  Google Scholar 

  126. Wu, D., et al. (2013). Cloud manufacturing: Strategic vision and state-of-the-art. Journal of Manufacturing Systems, 32(4), 564–579.

    Article  Google Scholar 

  127. Yang, S., et al. (2015). A unified framework and platform for designing of cloud-based machine health monitoring and manufacturing systems. Journal of Manufacturing Science and Engineering, 137(4), 040914.

    Article  Google Scholar 

  128. Baheti, R., & Gill, H. (2011). Cyber-physical systems. Impact of Control Technology, 12(1), 161–166.

    Google Scholar 

  129. Leitao, P., et al. (2016). Smart agents in industrial cyber–physical systems. Proc IEEE 2016, 104(5), 1086–1101.

    Google Scholar 

  130. Tuptuk, N., & Hailes, S. (2018). Security of smart manufacturing systems. Journal of Manufacturing Systems, 47, 93–106.

    Article  Google Scholar 

  131. Grieves, M. (2014). Digital twin: Manufacturing excellence through virtual factory replication.

    Google Scholar 

  132. Qi, Q., & Tao, F. (2018). Digital twin and big data towards smart manufacturing and industry 4.0: 360 degree comparison. IEEE Access, 6, 3585–3593.

    Article  Google Scholar 

  133. Schleich, B., et al. (2017). Shaping the digital twin for design and production engineering. CIRP Annals, 66(1), 141–144.

    Article  Google Scholar 

  134. Sharma, N., Patil, M., & Shamkuwar, M. (2019). Why big data and what is it? Basic to advanced big data journey for the medical industry. In V. E. Balas, L. H. Son, S. Jha, M. Khari, & R. Kumar (Eds.), Internet of things in biomedical engineering (1st ed., pp. 189–212). Cambridge: Academic Press, Elsevier, Science Direct.

    Chapter  Google Scholar 

  135. Rich, S. (2012). Big data is a “new natural resource.” IBM says.

    Google Scholar 

  136. Lee, J., et al. (2013). (2013) recent advances and trends in predictive manufacturing systems in big data environment. Manufacturing Letters, 1(1), 38–41.

    Article  Google Scholar 

  137. Barton, D., & Court, D. (2012). Making advanced analytics work for you. Harvard Business Review 2012, 90(10), 78–83,128.

    Google Scholar 

  138. Perrey, J., et al. (2013). Smart analytics: How marketing drives shortterm and long-term growth. In D. Court, J. Perrey, T. McGuire, J. Gordon, & D. Spillecke (Eds.), Big data, analytics, and the future of marketing & sales. New York, NY: McKinsey & Company.

    Google Scholar 

  139. http://www.wellgrounded.com.au/wp/innovation/why-is-innovation-important/

  140. https://blog.marketresearch.com/the-top-7-things-to-know-about-smart-manufacturing

  141. http://automationexcellence.com/Overview.html

  142. http://www.performance-ideas.com/2016/07/13/industry-4-0-big-data/

  143. Ramdasi, P., & Prasad R. (2018). Industry 4.0: Opportunities for analytics, conference: 2018 IEEE Punecon. https://doi.org/10.1109/PUNECON.2018.8745382.

  144. https://journalofbigdata.springeropen.com/articles/10.1186/s40537-018-0162-3

  145. https://en.wikipedia.org/wiki/Industrial_internet_of_things

  146. https://en.wikipedia.org/wiki/Cobot

  147. https://en.wikipedia.org/wiki/Cobot

  148. International Journal of Production Research, 57(15–16):4854–4879. https://doi.org/10.1080/00207543.2018.1449978

  149. Ghosh, A., et al. (2019). Industrial IoT networks powered by 5G new radio. Microwave Journal, 62(12), 24–40. 9 p.

    Google Scholar 

  150. Roblek, V., Meško, M., & Krapež, A. (2016). A complex view of Industry 4.0. SAGE Open, 6(2), 2158244016653987.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Preeti Ramdasi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sharma, N., Shamkuwar, M., Ramdasi, P. (2021). Digital Dimensions of Industry 4.0: Opportunities for Autonomic Computing and Applications. In: Choudhury, T., Dewangan, B.K., Tomar, R., Singh, B.K., Toe, T.T., Nhu, N.G. (eds) Autonomic Computing in Cloud Resource Management in Industry 4.0. EAI/Springer Innovations in Communication and Computing. Springer, Cham. https://doi.org/10.1007/978-3-030-71756-8_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-71756-8_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-71755-1

  • Online ISBN: 978-3-030-71756-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics