Skip to main content

Evaluating Predictive Deep Learning Models

  • Conference paper
  • First Online:
  • 564 Accesses

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1382))

Abstract

Predicting the future using deep learning models is a research field of increasing interest. However, there is a lack of established evaluation methods for assessing their predictive abilities. Images and videos are targeted towards human observers, and since humans have individual perceptions of the world, evaluation of videos should take subjectivity into account. In this paper, we present a framework for evaluating predictive models using subjective data. The methodology is based on a mixed methods research design, and is applied in an experiment to measure the realism and accuracy of predictions of a visual traffic environment. Our method is shown to be uncorrelated with the predominant approach for evaluating predictive models, which is a frame-wise comparison between predictions and ground truth. These findings emphasise the importance of using subjective data in the assessment of predictive abilities of models and open up a new direction for evaluating predictive deep learning models.

Supported by the University of Oslo.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Battaglia, M.: Encyclopedia of Survey Research Methods (2008). https://doi.org/10.4135/9781412963947. http://sk.sagepub.com/reference/survey

  2. Bubic, A., von Cramon, D.Y., Schubotz, R.I.: Prediction, cognition and the brain (2010). https://doi.org/10.3389/fnhum.2010.00025

  3. Castelló, J.S.: A comprehensive survey on deep future frame video prediction (2018)

    Google Scholar 

  4. Cox, S.: What is Meaningful Information? - Voice - Two Twelve (2014). http://www.twotwelve.com/voice/what-is-meaningful-information.html

  5. Crowston, K.: Amazon mechanical turk: a research tool for organizations and information systems scholars. In: Bhattacherjee, A., Fitzgerald, B. (eds.) IS&O 2012. IAICT, vol. 389, pp. 210–221. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-35142-6_14

    Chapter  Google Scholar 

  6. Dosovitskiy, A., Ros, G., Codevilla, F., López, A., Koltun, V.: CARLA: an open urban driving simulator. Technical report (2017)

    Google Scholar 

  7. Ha, D., Schmidhuber, J.: World models (2018). https://doi.org/10.5281/zenodo.1207631

  8. Hayes, A.F., Krippendorff, K.: Answering the call for a standard reliability measure for coding data. Commun. Methods Measures 1(1), 77–89 (2007). https://doi.org/10.1080/19312450709336664

    Article  Google Scholar 

  9. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Technical report 8 (1997). http://www7.informatik.tu-muenchen.de/~hochreitwww.idsia.ch/~juergen

  10. Kingma, D.P., Ba, J.L.: Adam: a method for stochastic optimization. In: 3rd International Conference on Learning Representations, ICLR 2015 - Conference Track Proceedings (2015)

    Google Scholar 

  11. Lee, A.X., Zhang, R., Ebert, F., Abbeel, P., Finn, C., Levine, S.: Stochastic adversarial video prediction (2018). https://doi.org/10.1080/08870440802530798

  12. Lerer, A., Gross, S., Fergus, R.: Learning physical intuition of block towers by example (2016). https://doi.org/10.1016/j.neucom.2015.11.100

  13. Lotter, W., Kreiman, G., Cox, D.: Deep predictive coding networks for video prediction and unsupervised learning, pp. 1–18 (2016). https://doi.org/10.1063/1.1727962. http://arxiv.org/abs/1605.08104

  14. Luc, P., Neverova, N., Couprie, C., Verbeek, J., Lecun, Y.: Predicting deeper into the future of semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision (2017), https://doi.org/10.1109/ICCV.2017.77

  15. Moorthy, A.K., Wang, Z., Bovik, A.C.: Visual perception and quality assessment. In: Optical and Digital Image Processing: Fundamentals and Applications, pp. 419–439 (2011). https://doi.org/10.1002/9783527635245.ch19

  16. van den Oord, A., Vinyals, O., Kavukcuoglu, K.: Neural discrete representation learning. In: Advances in Neural Information Processing Systems. vol. 2017-Decem, pp. 6307–6316 (2017)

    Google Scholar 

  17. Razavi, A., van den Oord, A., Vinyals, O.: Generating diverse high-fidelity images with VQ-VAE-2. In: Wallach, H., Larochelle, H., Beygelzimer, A., d Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 32, pp. 14866–14876. Curran Associates, Inc. (2019). http://papers.nips.cc/paper/9625-generating-diverse-high-fidelity-images-with-vq-vae-2.pdf

  18. Schoonenboom, J., Johnson, R.B.: How to construct a mixed methods research design. KZfSS Kölner Zeitschrift für Soziologie und Sozialpsychologie 69, 107–131 (2017). https://doi.org/10.1007/s11577-017-0454-1

    Article  Google Scholar 

  19. Strack, F.: “Order effects” in survey research: activation and information functions of preceding questions. In: Schwarz, N., Sudman, S. (eds.) Context Effects in Social and Psychological Research, pp. 23–34. Springer, New York (1992). https://doi.org/10.1007/978-1-4612-2848-6_3

    Chapter  Google Scholar 

  20. Wichers, N., Villegas, R., Erhan, D., Lee, H.: Hierarchical long-term video prediction without supervision, June 2018. http://arxiv.org/abs/1806.04768

  21. Willig, C.: Introducing Qualitative Research in Psychology, 3rd edn (2013)

    Google Scholar 

  22. Vaughan, J.W.: Making better use of the crowd: how crowdsourcing can advance machine learning research. Technical report (2018). http://jmlr.org/papers/v18/17-234.html

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Ribu Gorton .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gorton, P.R., Ellefsen, K.O. (2021). Evaluating Predictive Deep Learning Models. In: Yildirim Yayilgan, S., Bajwa, I.S., Sanfilippo, F. (eds) Intelligent Technologies and Applications. INTAP 2020. Communications in Computer and Information Science, vol 1382. Springer, Cham. https://doi.org/10.1007/978-3-030-71711-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-71711-7_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-71710-0

  • Online ISBN: 978-3-030-71711-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics