Skip to main content

Cinnamon: A Promising Natural Product Against COVID-19

  • Chapter
  • First Online:
Identification of Biomarkers, New Treatments, and Vaccines for COVID-19

Abstract

COVID-19 is a pandemic and acute respiratory disease. Every day, all around the world, researchers are endeavoring to find effective or potential adjuvant therapies. Studies illustrate that essential oils from cinnamon and derivatives such as cinnamaldehyde and cinnamic acid possess numerous biological activities. In this paper, we have reviewed the possible mechanisms of cinnamon on the inflammatory cascade as a potential alternative therapy to decrease oxidative stress and inflammation in COVID-19 patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Zhou P, Yang X-L, Wang X-G, Hu B, Zhang L, Zhang W et al (2020) A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 579(7798):270–273

    Article  CAS  Google Scholar 

  2. Weiss SR, Navas-Martin S (2005) Coronavirus pathogenesis and the emerging pathogen severe acute respiratory syndrome coronavirus. Microbiol Mol Biol Rev 69(4):635–664

    Article  CAS  Google Scholar 

  3. Salata C, Calistri A, Parolin C, Palu G (2019) Coronaviruses: a paradigm of new emerging zoonotic diseases. Pathog Dis 77(9):ftaa006. https://doi.org/10.1093/femspd/ftaa006

    Article  CAS  PubMed  Google Scholar 

  4. Xu H, Zhong L, Deng J, Peng J, Dan H, Zeng X et al (2020) High expression of ACE2 receptor of 2019-nCoV on the epithelial cells of oral mucosa. Int J Oral Sci 12(1):1–5

    Article  Google Scholar 

  5. Cameron MJ, Bermejo-Martin JF, Danesh A, Muller MP, Kelvin DJ (2008) Human immunopathogenesis of severe acute respiratory syndrome (SARS). Virus Res 133(1):13–19

    Article  CAS  Google Scholar 

  6. Ilyas U, Katare DP, Aeri V, Naseef PP (2016) A review on hepatoprotective and immunomodulatory herbal plants. Pharmacogn Rev 10(19):66–70

    Article  CAS  Google Scholar 

  7. Alikiaii B, Bagherniya M, Askari G, Johnston TP, Sahebkar A (2020) The role of phytochemicals in sepsis: a mechanistic and therapeutic perspective. BioFactors. Nov 20. https://doi.org/10.1002/biof.1694. Online ahead of print

  8. Alikiaii B, Bagherniya M, Askari G, Sathyapalan T, Sahebkar A (2020) Evaluation of the effect of curcumin on pneumonia: a systematic review of preclinical studies. Phytother Res. Nov 5. https://doi.org/10.1002/ptr.6939. Online ahead of print

  9. Gruenwald J, Freder J, Armbruester N (2010) Cinnamon and health. Crit Rev Food Sci Nutr 50(9):822–834

    Article  Google Scholar 

  10. Rao PV, Gan SH (2014) Cinnamon: a multifaceted medicinal plant. Evid Based Complement Alternat Med 642942:2014. https://doi.org/10.1155/2014/642942

    Article  Google Scholar 

  11. Fatima M, Zaidi NUSS, Amraiz D, Afzal F (2016) In vitro antiviral activity of Cinnamomum cassia and its nanoparticles against H7N3 influenza a virus. J Microbiol Biotechnol 26(1):151–159

    Article  CAS  Google Scholar 

  12. Ose R, Tu J, Schink A, Maxeiner J, Schuster P, Lucas K et al (2020) Cinnamon extract inhibits allergen-specific immune responses in human and murine allergy models. Clin Exp Allergy 50(1):41–50

    Article  CAS  Google Scholar 

  13. Youn HS, Lee JK, Choi YJ, Saitoh SI, Miyake K, Hwang DH et al (2008) Cinnamaldehyde suppresses toll-like receptor 4 activation mediated through the inhibition of receptor oligomerization. Biochem Pharmacol 75(2):494–502

    Article  CAS  Google Scholar 

  14. Peri F, Calabrese V (2014) Toll-like receptor 4 (TLR4) modulation by synthetic and natural compounds: an update: miniperspective. J Med Chem 57(9):3612–3622

    Article  CAS  Google Scholar 

  15. Marchese A, Barbieri R, Coppo E, Orhan IE, Daglia M, Nabavi SF et al (2017) Antimicrobial activity of eugenol and essential oils containing eugenol: a mechanistic viewpoint. Crit Rev Microbiol 43(6):668–689

    Article  CAS  Google Scholar 

  16. Dai JP, Zhao XF, Zeng J, Wan QY, Yang JC, Li WZ et al (2013) Drug screening for autophagy inhibitors based on the dissociation of Beclin1-Bcl2 complex using BiFC technique and mechanism of eugenol on anti-influenza A virus activity. PLoS One 8(4):e61026. https://doi.org/10.1371/journal.pone.0061026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lane T, Anantpadma M, Freundlich JS, Davey RA, Madrid PB, Ekins S (2019) The natural product eugenol is an inhibitor of the ebola virus in vitro. Pharm Res 36(7):104. https://doi.org/10.1007/s11095-019-2629-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Arachchillage DR, Laffan M (2020) Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J Thromb Haemost 18(5):1233–1234

    Article  CAS  Google Scholar 

  19. Jose RJ, Manuel A (2020) COVID-19 cytokine storm: the interplay between inflammation and coagulation. Lancet Respir Med 8(6):e46–e47. https://doi.org/10.1016/S2213-2600(20)30216-2

    Article  CAS  PubMed  Google Scholar 

  20. Kim SY, Koo YK, Koo JY, Ngoc TM, Kang SS, Bae K et al (2010) Platelet anti-aggregation activities of compounds from Cinnamomum cassia. J Med Food 13(5):1069–1074

    Article  CAS  Google Scholar 

  21. Raghavendra R, Naidu KA (2009) Spice active principles as the inhibitors of human platelet aggregation and thromboxane biosynthesis. Prostaglandins Leukot Essent Fat Acids 81(1):73–78

    Article  CAS  Google Scholar 

  22. Chen S-J, Wang M-H, Chen J (1996) Antiplatelet and calcium inhibitory properties of eugenol and sodium eugenol acetate. Gen Pharmacol 4(27):629–633

    Article  Google Scholar 

  23. Huang J, Wang S, Luo X, Xie Y, Shi X (2007) Cinnamaldehyde reduction of platelet aggregation and thrombosis in rodents. Thromb Res 119(3):337–342

    Article  CAS  Google Scholar 

  24. HARADA M, YANO S (1975) Pharmacological studies on Chinese cinnamon. II. Effects of cinnamaldehyde on the cardiovascular and digestive systems. Chem Pharm Bull 23(5):941–947

    Article  CAS  Google Scholar 

  25. Jakhetia V, Patel R, Khatri P, Pahuja N, Garg S, Pandey A et al (2010) Cinnamon: a pharmacological review. J Adv Sci Res 1(2):19–23

    Google Scholar 

  26. Kim DH, Kim CH, Kim M-S, Kim JY, Jung KJ, Chung JH et al (2007) Suppression of age-related inflammatory NF-κB activation by cinnamaldehyde. Biogerontology 8(5):545–554

    Article  CAS  Google Scholar 

  27. Liao BC, Hsieh CW, Liu YC, Tzeng TT, Sun YW, Wung BS (2008) Cinnamaldehyde inhibits the tumor necrosis factor-α-induced expression of cell adhesion molecules in endothelial cells by suppressing NF-κB activation: effects upon IκB and Nrf2. Toxicol Appl Pharmacol 229(2):161–171

    Article  CAS  Google Scholar 

  28. Liao Z, Wang J, Tan H, Wei L (2017) Cinnamon extracts exert intrapancreatic cytoprotection against streptozotocin in vivo. Gene 627:519–523

    Article  CAS  Google Scholar 

  29. Ranasinghe P, Pigera S, Premakumara GS, Galappaththy P, Constantine GR, Katulanda P (2013) Medicinal properties of ‘true’cinnamon (Cinnamomum zeylanicum): a systematic review. BMC Complement Altern Med 13(1):275. https://doi.org/10.1186/1472-6882-13-275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Modi KK, Roy A, Brahmachari S, Rangasamy SB, Pahan K (2015) Cinnamon and its metabolite sodium benzoate attenuate the activation of p21rac and protect memory and learning in an animal model of Alzheimer’s disease. PLoS One 10(6):e0130398. https://doi.org/10.1371/journal.pone.0130398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ho SC, Chang KS, Chang PW (2013) Inhibition of neuroinflammation by cinnamon and its main components. Food Chem 138(4):2275–2282

    Article  CAS  Google Scholar 

  32. Zareie A, Sahebkar A, Khorvash F, Bagherniya M, Hasanzadeh A, Askari G (2020) Effect of cinnamon on migraine attacks and inflammatory markers: a randomized double-blind placebo-controlled trial. Phytother Res 34(11):2945–2952

    Article  CAS  Google Scholar 

  33. Colafrancesco S, Scrivo R, Barbati C, Conti F, Priori R (2020) Targeting the immune system for pulmonary inflammation and cardiovascular complications in COVID-19 patients. Front Immunol 11:1439. https://doi.org/10.3389/fimmu.2020.01439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mohammad Bagherniya or Amirhossein Sahebkar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zareie, A. et al. (2021). Cinnamon: A Promising Natural Product Against COVID-19. In: Guest, P.C. (eds) Identification of Biomarkers, New Treatments, and Vaccines for COVID-19. Advances in Experimental Medicine and Biology(), vol 1327. Springer, Cham. https://doi.org/10.1007/978-3-030-71697-4_15

Download citation

Publish with us

Policies and ethics