Skip to main content

Enhanced-Geothermal-Systems (EGS), Hot-Dry-Rock Systems (HDR), Deep-Heat-Mining (DHM)

  • Chapter
  • First Online:
Geothermal Energy

Abstract

Enhanced-Geothermal-Systems (EGS) use the deep underground as a source of heat for the production of electrical and thermal energy irrespective of the hydraulic properties of the deep heat reservoir. The upper continental crust is always fractured; its fracture density differs however. A saline, occasionally gas-rich fluid is typically present on the fractures. The geothermal utilization of the hot underground with low hydraulic conductivity is sometimes also referred to as “deep heat mining” (DHM). Because the continental crust is predominantly granitic or gneissic, EGS systems strongly focus on granitic heat reservoirs. Typical target temperatures for EGS systems are above 200 °C. This means that wellbores of 6 to 10 km have to be drilled in continental crust with an average geothermal gradient.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Armstead, H. C. H. & Tester, J. W., 1987. Heat Mining, E. & F. N. Spon, London.

    Google Scholar 

  • Baria, R. A. & Green, S. P., 1989. Microseismics: A Key to Understanding Reservoir Growth. In: Baria, E. R. (ed.): Hot Dry Rock Geothermal Energy, Proc. Camborne School of Mines International Hot Dry Rock Conference, 363–377, Robertson Scientific Publications, London.

    Google Scholar 

  • Baria, R., Michelet, S., Baumgärtner, J., Dyer, B., Gerard, A., Nicholls, J., Hettkamp, T., Teza, D., Soma, N. & Asanuma, H., 2004. Microseismic monitoring of the world largest potential HDR reservoir. In: Proceedings of the 29th Workshop on Geothermal Reservoir Engineering, Stanford University, California.

    Google Scholar 

  • Batchelor, A. S., 1977. Brief summary of some geothermal related studies in the United Kingdom. In: 2nd NATO/CCMS Geothermal Conf. 22 24 Jun., Section 1.21, pp. 27–29, Los Alamos.

    Google Scholar 

  • Bencic, A., 2005. Hydraulic Fracturing of the Rotliegend Sst. in N-Germany - Technology, Company History and Strategic Impotance. In: SPE Technology Transfer Workshop, Suco, Zeit Bay Field.

    Google Scholar 

  • Bommer, J. J., Oates, S., Cepeda, J. M., Lindholm, C., Bird, J., Torres, R., Marroquin, G. & Rivas, J., 2006. Control of hazard due to seismicity induced by a hot fractured rock geothermal project. Engineering Geology, 83 (4), 287–306.

    Google Scholar 

  • Brown, D. W., 2009. Hot Dry Rock geothermal energy: Important lessons from Fenton Hill. Proc. Thirty-Fourth Workshop on Geothermal Reservoir Engineering, Stanford University, Stanford, Cal, USA, 4.

    Google Scholar 

  • Brown, E.T. & Hoek, E., 1978. Trends in relationships between measured rock in situ stresses and depth. Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 15, 211–215.

    Google Scholar 

  • Brown, D. W., Duchane, D. V., Heiken, G. & Hriscu, V. T., 2012. Mining the Earth Heat: Hot Dry Rock Geothermal Energy. Springer Verlag, Heidelberg, 657 p.

    Google Scholar 

  • Bucher, K. & Grapes, R., 2011. Petrogenesis of Metamorphic Rocks, 8th edition. Springer Verlag, Berlin Heidelberg. 428 pp.

    Google Scholar 

  • Bucher, K. & Stober, I., 2000. The composition of groundwater in the continental crystalline crust. In: Stober, I. & Bucher, K. (eds.). Hydrogeology in crystalline rocks, 141–176, KLUWER Academic Publishers.

    Google Scholar 

  • Bucher, K. & Stober, I., 2010. Fluids in the upper continental crust. Geofluids, 10, 241–253.

    Google Scholar 

  • Caine, J. S. & Tomusiak, S. R. A., 2003. Brittle structures and their role in controlling porosity and permeability in a complex Precambrian crystalline-rock aquifer system in the Colorado Rocky Mountain Front Range. GSA Bulletin, 115(11), 1410–1424.

    Google Scholar 

  • Cornet, F., Helm, J., Poitrenaud, H. & Etchecopar, A., 1997. Seismic and aseismic slips induced by large-scale fluid injections. Pure and Applied Geophysics, 150, 563–583.

    Google Scholar 

  • Dash, Z. V., Murphy, H. D. & Cremer, G. M., 1981. Hot Dry Rock Geothermal Reservoir Testing: 1978 to 1980. Los Alamos National Laboratory Report LA-9080-SR.

    Google Scholar 

  • Dezayes, C., Gentier, S. & Genter, A., 2005. Deep Geothermal Energy in Western Europe: The Soultz Project (Final Report). BRGM/RP-54227-FR, 51 pp.

    Google Scholar 

  • Duchane, D. V. & Brown, D. W., 2002. Hot Dry Rock (HDR) Geothermal Energy Research and Development at Fenton Hill, New Mexico. GHC Bulletin, 32, 13–19.

    Google Scholar 

  • Duffield, R. B., Nunz, G. J., Smith, M. C. & Wilson, M. G., 1981. Hot Dry Rock, Geothermal Energy Development Program, pp. 211, Los Alamos National Laboratory Report.

    Google Scholar 

  • Ernst, P. L., 1977. A Hydraulic Fracturing Technique for Dry Hot Rock Experiments in a Single Borehole, pp. 7, Soc. Petrol. Engineers of AIME, Dallas, Texas.

    Google Scholar 

  • Evans, K., Genter, A. & Sausse, J., 2005. Permeability creation and damage due to massive fluid injections into granite et 3.5 km at Soultz: 1- Borehole observations. J. Geophys. Res., 110, 1–19.

    Google Scholar 

  • Genter, A., Keith, E., Cuenot, N., Fritsch, D. & Sanjuan, B., 2010. Contribution to the exploration of deep crystalline fractured reservoir of Soultz of the knowledge of enhanced geothermal systems (EGS). C. R. Geoscience, 342, 502–516.

    Google Scholar 

  • Genter, A., Cuenot, N., Goerke, X., Melchert, B., Sanjuan, B. & Scheiber, J., 2012. Status of the Soultz geothermal project during explotation between 2010 and 2012. Proc. Thirty-Fourth Workshop on Geothermal Reservoir Engineering, Stanford University, Stanford, Cal, USA, 11.

    Google Scholar 

  • Gérard, A., Genter, A., Kohl, T., Lutz, P., Rose, P. & Rummel, F., 2006. The deep EGS (Enhanced Geothermal System) project at Soultz-sous-Forêts (Alsace, France).- Geothermics, pp. 473–483.

    Google Scholar 

  • Giardini, D., 2009. Geothermal quake risks must be faced. Nature, 462, 848–849.

    Google Scholar 

  • Hehn, R., Genter, A., Vidal, J. & Baujard, C., 2016. Stress field rotation in the EGS well GRT-1 (Rittershoffen, France). European Geothermal Congress, 10 p., Strasbourg, France.

    Google Scholar 

  • Huenges, E., 2010. Geothermal Energy Systems: Exploration, Development, and Utilization, pp. 486, Wiley-VCH Verlag GmbH & Co. KGaA, Berlin.

    Google Scholar 

  • Ingebritsen, S. E. & Manning, C. E., 1999. Geological implications of a permeability-depth curve for the continental crust. Geology, 27, 1107–1110.

    Google Scholar 

  • Kalfayan, L., 2008. Production enhancement with Acid Stimulation, 2nd Edition. PennWell Corp., 270 pp.

    Google Scholar 

  • Kappelmeyer, O. & Rummel, F., 1980. Investigations on an artificially created frac in a shallow and low permeable environment.- Proc. 2nd. International Seminar on the Results of EC Geothermal Energy Research, pp. 1048–1053, Strasbourg.

    Google Scholar 

  • Kohl, T., Evans, K. F., Hopkirk, R. J., Jung, R. & Rybach, L., 1997. Observation and simulation of non-Darcian flow transients in fractured rock. Water Resources Research, 33, 407–418.

    Google Scholar 

  • Lund, J. W., 2007. Characteristics, Development and utilization of geothermal resources. Geo-Heat Centre Quarterly Bulletin, 28, 1–9.

    Google Scholar 

  • Mazurek, M., 2000. Geological and Hydraulic Properties of Water-Conducting Features in Crystalline Rocks. In: Stober, I. & Bucher, K. (eds.). Hydrogeology of Crystalline Rocks. Kluwer Acad. Publ, 3-26.

    Google Scholar 

  • MIT, 2007. The Future of Geothermal Energy, Impact of Enhanced Geothermal Systems (EGS) on the United States in the 21st Century, Massachusetts Institute of Technology, U.S.A.

    Google Scholar 

  • Mouchot, J., Genter, A., Cuenot, N., Scheiber, J., Seibel, O., Bosia, C. & Ravier, G., 2018. First year of Operation from EGS geothermal Plants in Alsace, France: Scaling Issues.- Proceedings, 43rd Workshop on Geothermal Reservoir Engineering, Stanford University, SGP-TR-213, 12 p., Stanford/California.

    Google Scholar 

  • Nicholson, C. & Wesson, R. L., 1990. Earthquake Hazard associated with deep well injection - a report to the U.S. Environmental Protection Agency, pp. 74, U.S. Geological Survey Bulletin.

    Google Scholar 

  • Pauwels, H., Fouillac, C. & Fouillac, A. M., 1993. Chemistry and isotopes of deep geothermal saline fluids in the Upper Rhine Graben: Origin of compounds and water-rock interactions. Geochimica et Cosmochimica Acta, 57, 2737–2749.

    Google Scholar 

  • Pearson, C., 1981. The Relationship Between Microseismicity and High Pore Pressures During Hydraulic Stimulation Experiments in Low Permeability Granitic Rocks. Journal of Geophysical Research, 86(B9), 7855–7864.

    Google Scholar 

  • Pine, R. J. & Batchelor, B. A., 1984. Downward migration of shearing in jointed rock during hydraulic injections. Int. J. of Rock Mechanics Mining Sciences and Geomechanical Abstracts, 21(5), 249–263.

    Google Scholar 

  • Portier, S., André, L. & Vuataz, F.-D., 2007. Review on chemical stimulation techniques in oil industry and applications to geothermal systems. In: Engine, pp. 32, CREGE, Neuchatel, Switzerland.

    Google Scholar 

  • Rybach, L., 2004. EGS – State of the Art. In: Tagungsband der 15. Fachtagung der Schweizerischen Vereinigung für Geothermie, Basel.

    Google Scholar 

  • Schädel, K. & Dietrich, H.-G., 1979. Results of the Fracture Experiments at the Geothermal Research Borehole Urach 3. In: In: Haenel, R. (ed): The Urach Geothermal Projekt (Swabian Alb, Germany), pp. 323–344, Schweizerbart’sche Verlagsbuchhandlung, Stuttgart.

    Google Scholar 

  • Scheiber, J., Seibt, A., Birner, J., Genter, A., Cuenot, N., Moeckes, W., 2015. Scale Inhibition at the Soultz-sous-Forêts (France) EGS Site: Laboratory and On-Site Studies.- Proceedings World Geothermal Congress, 12 p., Melbourne, Australia.

    Google Scholar 

  • Schuck, A., Vormbaum, M., Gratzl, S., Stober, I. 2012. Seismische Modellierung zur Detektierbarkeit von Störungen im Kristallin.- Erdöl, Erdas, Kohle, 128 (1), S. 14–20, Urban-Verlag, Hamburg/Wien.

    Google Scholar 

  • Shapiro, S. A. & Dinske, C., 2009. Fluid-induced seismicity: Pressure diffusion and hydraulic fracturing. Geophysical Prospecting, 57, 301–310.

    Google Scholar 

  • Smith, M. C., Aamodt, R. L., Potter, R. M. & W., B. D., 1975. Man-made geothermal reservoirs. Proc. UN Geothermal Symp., 3, 1781–1787.

    Google Scholar 

  • Stober, I., 1986. Strömungsverhalten in Festgesteinsaquiferen mit Hilfe von Pump- und Injektionsversuchen (The Flow Behaviour of Groundwater in Hard-Rock Aquifers – Results of Pumping and Injection Tests) (in German). Geologisches Jahrbuch, Reihe C, 204 pp.

    Google Scholar 

  • Stober, I., 2011. Depth- and pressure-dependent permeability in the upper continental crust: data from the Urach 3 geothermal borehole, southwest Germany. Hydrogeology Journal, 19, 685–699.

    Google Scholar 

  • Stober, I. & Bucher, K., 2005a. The upper continental crust, an aquifer and its fluid: hydraulic and chemical data from 4 km depth in fractured crystalline basement rocks at the KTB test site. Geofluids, 5, 8–19.

    Google Scholar 

  • Stober, I. & Bucher, K., 2007b. Erratum to: Hydraulic properties of the crystalline basement. Hydrogeology Journal, 15, 1643. (See further correction in Stober & Bucher 2015).

    Google Scholar 

  • Stober, I. & Bucher, K., 2007a. Hydraulic properties of the crystalline basement. Hydrogeology Journal, 15, 213–224.

    Google Scholar 

  • Stober, I. & Bucher, K., 2015. Hydraulic conductivity of fractured upper crust: insights from hydraulic tests in boreholes and fluid-rock interaction in crystalline basement rocks. Geofluids, 15, 161–178.

    Google Scholar 

  • Talwani, P., Chen, L. & Gahalaut, K., 2007. Seismogenic permeability, ks. Journal of Geophysical Research, 112, B07309. https://doi.org/10.1029/2006JB004665.

  • Tischner, T., Schindler, M., Jung, R. & Nami, P., 2007. HDR Project Soultz: Hydraulic and seismic observations during stimulation of the 3 deep wells by massiv water injections. In: Proceedings, thirty-second workshop on geothermal engineering, Stanford University, pp. 7, Stanford, California.

    Google Scholar 

  • Valley, B. & Evans, K., 2003. Strength and elastic properties of the Soultz granite. – In: Zürich, E. (Hg.): Synthetic 2nd year report, Zürich, Switzerland: 6 S., Zürich (Eidgenöss. Techn. Hochsch.).

    Google Scholar 

  • Williams, B. B., Gidley, J. L. & Schechter, R. S., 1979. Acidizing Fundamentals. Society of Petroleum, 273 pp.

    Google Scholar 

  • Zobak, M. D., Barton, C. A., Brudy, M., Castillo, D. A., Finkbeiner, T., Grollimund, B. R., Moos, D. B., Peska, P., Ward, C. D. & Wipurt, D. J., 2003. Determination of stress orientation and magnitude in deep wells. International Journal of Rock Mechanics and Mining Sciences, 40, 1049–1076.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ingrid Stober .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Stober, I., Bucher, K. (2021). Enhanced-Geothermal-Systems (EGS), Hot-Dry-Rock Systems (HDR), Deep-Heat-Mining (DHM). In: Geothermal Energy. Springer, Cham. https://doi.org/10.1007/978-3-030-71685-1_9

Download citation

Publish with us

Policies and ethics